13 research outputs found

    A Single-Cell Model for Synaptic Transmission and Plasticity in Human iPSC-Derived Neurons

    Get PDF
    Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine. This multisite study by Meijer et al. establishes a standardized in vitro approach to study synapse formation and function in single iPSC-derived human neurons. They validate this approach for GABA and glutamatergic human neurons. The methodology is scalable and suitable for compound screening and disease modeling

    Excitability and Calcium Signaling. A comparative study on Xenopus laevis melanotrope cells and normal rat kidney fibroblasts

    Get PDF
    Contains fulltext : 19428_exciancas.pdf (publisher's version ) (Open Access)RU Radboud Universiteit Nijmegen, 16 april 2004Promotores : Gielen, C.C.A.M., Roubos, E.W., Ypey, D.L. Co-promotor : Scheenen, W.J.J.M.225 p

    Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus laevis.

    No full text
    A minimal model is presented to explain changes in frequency, shape, and amplitude of Ca2+ oscillations in the neuroendocrine melanotrope cell of Xenopus Laevis. It describes the cell as a plasma membrane oscillator with influx of extracellular Ca2+ via voltage-gated Ca2+ channels in the plasma membrane. The Ca2+ oscillations in the Xenopus melanotrope show specific features that cannot be explained by previous models for electrically bursting cells using one set of parameters. The model assumes a KCa-channel with slow Ca2+-dependent gating kinetics that initiates and terminates the bursts. The slow kinetics of this channel cause an activation of the Kca-channel with a phase shift relative to the intracellular Ca2+ concentration. The phase shift, together with the presence of a Na+ channel that has a lower threshold than the Ca2+ channel, generate the characteristic features of the Ca2+ oscillations in the Xenopus melanotrope cell

    New aspects of signal transduction in the Xenopus laevis melanotrope cell.

    No full text
    Contains fulltext : 123580.pdf (publisher's version ) (Closed access)Light and temperature stimuli act via various brain centers and neurochemical messengers on the pituitary melanotrope cells of Xenopus laevis to control distinct subcellular activities such as the biosynthesis, processing, and release of alpha-melanophore-stimulating hormone (alphaMSH). The melanotrope signal transduction involves the action of a large repertoire of neurotransmitter and neuropeptide receptors and the second messengers cAMP and Ca(2+). Here we briefly review this signaling mechanism and then present new data on two aspects of this process, viz. the presence of a stimulatory beta-adrenergic receptor acting via cAMP and the egress of cAMP from the melanotrope upon a change of alphaMSH release activity

    Multiple control and dynamic response of the Xenopus melanotrope cell.

    No full text
    Item does not contain fulltextSome amphibian brain-melanotrope cell systems are used to study how neuronal and (neuro)endocrine mechanisms convert environmental signals into physiological responses. Pituitary melanotropes release alpha-melanophore-stimulating hormone (alpha-MSH), which controls skin color in response to background light stimuli. Xenopus laevis suprachiasmatic neurons receive optic input and inhibit melanotrope activity by releasing neuropeptide Y (NPY), dopamine (DA) and gamma-aminobutyric acid (GABA) when animals are placed on a light background. Under this condition, they strengthen their synaptic contacts with the melanotropes and enhance their secretory machinery by upregulating exocytosis-related proteins (e.g. SNAP-25). The inhibitory transmitters converge on the adenylyl cyclase system, regulating Ca(2+) channel activity. Other messengers like thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH, from the magnocellular nucleus), noradrenalin (from the locus coeruleus), serotonin (from the raphe nucleus) and acetylcholine (from the melanotropes themselves) stimulate melanotrope activity. Ca(2+) enters the cell and the resulting Ca(2+) oscillations trigger alpha-MSH secretion. These intracellular Ca(2+) dynamics can be described by a mathematical model. The oscillations travel as a wave through the cytoplasm and enter the nucleus where they may induce the expression of genes involved in biosynthesis and processing (7B2, PC2) of pro-opiomelanocortin (POMC) and release (SNAP-25, munc18) of its end-products. We propose that various environmental factors (e.g. light and temperature) act via distinct brain centers in order to release various neuronal messengers that act on the melanotrope to control distinct subcellular events (e.g. hormone biosynthesis, processing and release) by specifically shaping the pattern of melanotrope Ca(2+) oscillations

    Modeling action potential generation and propagation in NRK fibroblasts.

    No full text
    Contains fulltext : 57337.pdf (publisher's version ) (Closed access)Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch-clamp experiments, an inwardly rectifying potassium conductance (G(Kir)), an L-type calcium conductance (G(CaL)), a leak conductance (G(leak)), an intracellular calcium-activated chloride conductance [G(Cl(Ca))], and a gap junctional conductance (G(gj)), coupling neighboring cells in a hexagonal pattern. This membrane model has been extended with simple intracellular calcium dynamics resulting from calcium entry via G(CaL) channels, intracellular buffering, and calcium extrusion. It reproduces excitability of single NRK cells and cell clusters and intercellular action potential (AP) propagation in NRK cell monolayers. Excitation can be evoked by electrical stimulation, external potassium-induced depolarization, or hormone-induced intracellular calcium release. Analysis shows the roles of the various ion channels in the ultralong ( approximately 30 s) NRK cell AP and reveals the particular role of intracellular calcium dynamics in this AP. We support our earlier conclusion that AP generation and propagation may act as a rapid mechanism for the propagation of intracellular calcium waves, thus contributing to fast intercellular calcium signaling. The present model serves as a starting point to further analyze excitability changes during contact inhibition and cell transformation

    Automated analysis of secretory vesicle distribution at the ultrastructural level

    No full text
    Neuroendocrine cells like chromaffin cells and PC-12 cells are established models for transport, docking and secretion of secretory vesicles. In micrographs, these vesicles are recognized by their electron dense core. The analysis of secretory vesicle distribution is usually performed manually, which is labour-intensive and subject to human bias and error. We have developed an algorithm to analyze secretory vesicle distribution and docking in electron micrographs. Our algorithm automatically detects the vesicles and calculates their distance to the plasma membrane on basis of the pixel coordinates, ensuring that all vesicles are counted and the shortest distance is measured. We validated the algorithm on a several preparations of endocrine cells. The algorithm was highly accurate in recognizing secretory vesicles and calculating their distribution including vesicle-docking analysis. Furthermore, the algorithm enabled the extraction of parameters that cannot be measured manually like vesicle clustering. Taking together, the algorithm facilitates and expands the unbiased and efficient analysis of secretory vesicle distribution and docking. © 2008 Elsevier B.V. All rights reserved

    Sauvagine Regulates Ca2+ Oscillations and Electrical Membrane Activity of Melanotrope Cells of Xenopus laevis.

    No full text
    Item does not contain fulltextCa2+ oscillations regulate secretion of the hormone alpha-melanphore-stimulating hormone (alpha-MSH) by the neuroendocrine pituitary melanotrope cells of the amphibian Xenopus laevis. These Ca2+ oscillations are built up by discrete increments in the intracellular Ca2+ concentration, the Ca2+ steps, which are generated by electrical membrane bursting firing activity. It has been demonstrated that the patterns of Ca2+ oscillations and kinetics of the Ca2+ steps can be modulated by changing the degree of intracellular Ca2+ buffering. We hypothesized that neurotransmitters known to regulate alpha-MSH secretion also modulate the pattern of Ca2+ oscillations and related electrical membrane activity. In this study, we tested this hypothesis for the secretagogue sauvagine. Using high temporal-resolution Ca2+ imaging, we show that sauvagine modulated the pattern of Ca2+ signalling by increasing the frequency of Ca2+ oscillations and inducing a broadening of the oscillations through its effect on various Ca2+ step parameters. Second, we demonstrate that sauvagine caused a small but significant decrease in K+ currents measured in the whole-cell voltage-clamp, whereas Ca2+ currents remained unchanged. Third, in the cell-attached patch-clamp mode, a stimulatory effect of sauvagine on action current firing was observed. Moreover, sauvagine changed the shape of individual action currents. These results support the hypothesis that the secretagogue sauvagine stimulates the frequency of Ca2+ oscillations in Xenopus melanotropes by altering Ca2+ step parameters, an action that likely is evoked by an inhibition of K+ currents
    corecore