149 research outputs found

    Effect of different cover crop residue management practices on soil moisture content under a tomato crop (Lycopersicon esculentum)

    Get PDF
    Water relations are among the most important physical phenomena that affect the use of soils for agricultural, ecological, environmental, and engineering purposes. In sub-Saharan African, water is most critical in limiting crop production and yields especially in the Arid and Sub-arid regions. The soil water storage, available water content and soil water balance under various cover crop residue management practices in a Nitisol were evaluated in a field experiment at the Kabete Field Station, University of Nairobi. The effects of surface mulching, above and below ground biomass and roots only incorporated of velvet bean (Mucuna pruriens), Tanzanian sunhemp (Crotalaria ochroleuca) and purple vetch (Vicia benghalensis) cover crops, fertilizer and non fertilized plots on soil water balance were studied. The experimental design was a split plot and tomato (Lycopersicon esculentum) was the test crop. Since water content was close to field capacity, the drainage component at 100 cm soil depth was negligible and evapotranspiration was therefore derived from the change in soil moisture storage and precipitation. Residue management showed that above and below ground biomass incorporated optimized the partitioning of the water balance components, increasing moisture storage, leading to increased tomato yields and water use efficiency (WUE). Furthermore, vetch above and below ground biomass incorporated significantly improved the quantity and frequency of deep percolation. Soil fertilization (F) and non fertilization (NF) caused the most unfavourable partitioning of water balance, leading to the lowest yield and WUE. Tomato yields ranged from 4.1 in NF to 7.4 Mg ha-1 in vetch treated plots. Vetch above and belowground biomass incorporated had significant (p ≤ 0.1) yields of 11.4 Mg ha-1 compared to all other residue management systems. Vetch residue treatment had the highest WUE (22.7 kg mm-1 ha-1) followed by mucuna treated plots (20.7 kg mm-1 ha-1) and both were significantly different (p ≤ 0.05) compared to the others irrespective of residue management practices

    BIOFUELS, AGRICULTURE AND CLIMATE CHANGE

    Get PDF
    In the context of ever-increasing petroleum prices combined with concerns about climate change, timing of adoption and rate of diffusion of land-based fuels and backstop technologies for transportation use are examined in this paper. A global model of land allocation joined with a Hotelling model has been developed. Using this framework, effects of climate and energy policies on world agricultural and energy markets have been explored. Further, their regional impacts are also analyzed. Whereas mandatory blending bio-fuels have substantial effects on world food prices and do not succeed in curbing down carbon emissions fluxes, carbon targets are expected to speed up date of adoption of backstop technologies. Then, sensitivity scenarios with regards to technological parameters reveal that higher is the rate of technological change, earlier backstop technologies are adopted and lower is the stock of carbon accumulated into the atmosphere. Finally, interplay between land-based fuels and deforestation has been studied. Results show that land-based fuels production speeds up world deforestation and causes substantial carbon emissions due to conversion of forests into agricultural lands.Ricardian rents, land use, biofuels, Resource /Energy Economics and Policy,

    Soil hydraulic properties of a Nitisol in Kabete, Kenya

    Get PDF
    Water relations are among the most important physical phenomena that affect the use of soils for agricultural, ecological, environmental, and engineering purposes. To formulate soil-water relationships, soil hydraulic properties are required as essential inputs. The most important hydraulic properties are the soil-water retention curve and the hydraulic conductivity. The objective of this study was to determine the soil hydraulic properties of a Nitisol, at Kabete Campus Field Station. Use of an internal drainage procedure to characterize the hydraulic properties and soil and water retention curves allowed for the establishment of the moisture and matric potential at field capacity and permanent wilting point. The Bt2 (84 -115) and Bt3 (115 - 143 cm) had the highest clay contents of 619 compared to Ap, AB and Bt1 horizons. The PWP was attained at soil moisture contents of 0.223, 0.284, 0277, 0.307 and 0.314 m3m-3 in the Ap, AB, Bt1, Bt2, and Bt3 horizons, respectively. Horizontal saturated hydraulic conductivity (Ksat) was high at 6.0 cm hr-1 in Ap horizon and decreased to 0.4 cm hr-1 in the subsurface horizon (Bt3). Ksat in the vertical direction was higher than horizontal and ranged from 8.3 cm hr-1 in surface layer to 0.6 cm hr-1 in Bt3 horizon, with exception of Bt1 and Bt2 where horizontal Ksat was greater than vertical. The Ap horizon also had the highest crop extractable water. Though the AB and Bt1 had the same water content at low matric suction, the variation was very wide as the SWRC approached saturation point. Bt1 and Bt2 also had similar water contents at suction range of – 7kPa after which Bt1, tended towards Bt3. Bt3 had the narrowest range of crop extractable water and thus was attributed to texture. The Bt3 retained the most amount of water at 0.314 m3m-3concluding that θPWP increased with depth. The total available water capacity between FC and PWP in the profile was 79.2 mm m-1. The study observed that the field capacity, crop available water contents and hydraulic conductivities were influenced positively by soil organic matter. The Van Genuchten parameters of air entry value (α) and pore size distribution (n) indicated that pore size distribution was not even in the AP and AB horizons. The field capacity was attained at higher matric potential at -5kPa for Bt1 while Bt2 and AP, AB, Bt2 and Bt3 was at -10kPa.The functional relationship, K(θ) = aθb that deals with water redistribution as a result of soil hydraulic properties and evaporative demand of the atmosphere was highly correlated to soil moisture content and texture with R2 values > 0.85

    Global axisymmetric simulations of photoevaporation and magnetically driven protoplanetary disk winds

    Full text link
    Photoevaporation and magnetically driven winds are two independent mechanisms to remove mass from protoplanetary disks. In addition to accretion, the effect of these two principles acting concurrently could be significant and the transition between those two has not been extensively studied and quantified in the literature yet. In order to contribute to the understanding of disk winds, we present the phenomena emerging in the framework of two-dimensional axisymmetric, non-ideal magnetohydrodynamic simulations including EUV-/ X-ray driven photoevaporation. Of particular interest are the examination of the transition region between photoevaporation and magnetically driven wind, the possibility of emerging magneto-centrifugal wind effects, as well as the morphology of the wind itself depending on the strength of the magnetic field. We use the PLUTO code in a 2.5D axisymmetric configuration with additional treatment of EUV-/ X-ray heating and dynamic ohmic diffusion based on a semi-analytical chemical model. We identify the transition between both outflow types to occur for values of the initial plasma beta β≥107\beta \geq 10^7, while magnetically driven winds generally outperform photoevaporation for stronger fields. In our simulations we observe irregular and asymmetric outflows for stronger magnetic fields. In the weak field regime the photoevaporation rates are slightly lowered by perturbations of the gas density in the inner regions of the disk. Overall, our results predict a wind with a lever arm smaller than 1.5, consistent with a hot magneto-thermal wind. Stronger accretion flows are present for values of β<107\beta < 10^7.Comment: Published in A&A 633, A21 (2020

    Recruitment failure and futility were the most common reasons for discontinuation of clinical drug trials. Results of a nationwide inception cohort study in the Netherlands

    Get PDF
    Objectives The objective of the study was to identify the reasons for discontinuation of clinical drug trials and to evaluate whether efficacy-related discontinuations were adequately planned in the trial protocol. Study Design and Setting All clinical drug trials in the Netherlands, reviewed by institutional review boards in 2007, were followed until December 2015. Data were obtained through the database of the Dutch competent authority (Central Committee on Research Involving Human Subjects [CCMO]) and a questionnaire to the principal investigators. Reasons for trial discontinuation were the primary outcome of the study. Three reasons for discontinuation were analyzed separately: all cause, recruitment failure, and efficacy related (when an interim analysis had demonstrated futility or superiority). Among the efficacy-related discontinuations, we examined whether the data monitoring committee, the stopping rule, and the moment of the interim analysis in the trial progress were specified in the trial protocol. Results Of the 574 trials, 102 (17.8%) were discontinued. The most common reasons were recruitment failure (33 of 574; 5.7%) and solely efficacy related (30 of 574; 5.2%). Of the efficacy-related discontinuations, 10 of 30 (33.3%) of the trial protocols reported all three aspects in the trial protocol, and 20 of 30 (66.7%) reported at least one aspect in the trial protocol. Conclusion One out of five clinical drug trials is discontinued before the planned trial end, with recruitment failure and futility as the most common reasons. The target sample size of trials should be feasible, and interim analyses should be adequately described in trial protocols

    Traits, trends and hits of orphan drug designations in cystic fibrosis

    Get PDF
    Background: In the United States (US) and in Europe, cystic fibrosis (CF) qualifies as a rare disease, thus positioning the field to benefit from regulatory incentives provided by orphan drug designation (ODD) to boost pharmaceutical research and development. In this study, we analyzed the pool of products for the treatment of CF that received such incentives from the US Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) over the past two decades. We describe the characteristics and trends in ODDs over time and explore factors that might be determinants of successful drug development. Methods: We collected the products that received the ODD from the registries of the FDA and the EMA from 2000 to 2021, characterizing their nature, development stage, and type of sponsor. We categorized the study drugs according to the therapeutic target addressed and described trends of drug development over the study period. A logistic regression analysis was done to assess how ODD characteristics were associated with the approval for market authorization. Results: From 2000–2021, 107 ODDs were collectively granted by the FDA and the EMA for products developed for the treatment of CF. Although the trends of the number of ODDs granted remained stable over time, those targeting the CF basic protein defect increased from 6 out of 54 (11.1%) in the first half of the study period up to 20 out of 54 (37.7%) in the second half, while those treating symptoms decreased from 48/54 (88.9%) to 33/53 (62.3%). Overall, 10 products obtained marketing approval: 7 in both the US and Europe, 3 only in Europe. All the approved ODDs were chemical products for chronic use. No statistically significant difference was found across the examinated variables, but we observed possible drivers of successful drug development for ODDs targeting CFTR, as well as for those with active substances previously marketed, and for those developed by large companies and companies with experience in developing orphan drugs. By contrast, our findings suggest that financial issues most hamper the development of ODDs sponsored by small-medium enterprises. Conclusions: Although ODDs for treating infection and other CF sequelae accounted for the majority, we observed a shift of ODDs toward mechanism-based products over the study period. In line with other rare diseases, we found that approximately 1/10 ODDs for CF reached the status of marketing approval. Advances in disease genetics paved the way for a shift in CF drug development; however, we described how the convergence of pharmaceutical technology, the financial environment, and the regulatory ecosystem played a crucial role in successful marketing authorization in CF
    • …
    corecore