79 research outputs found

    PK/PD models in antibacterial development

    Get PDF
    There is an urgent need for novel antibiotics to treat life-threatening infections caused by bacterial 'superbugs'. Validated in vitro pharmacokinetic/pharmacodynamic (PK/PD) and animal infection models have been employed to identify the most predictive PK/PD indices and serve as key tools in the antibiotic development process. The results obtained can be utilized for optimizing study designs in order to minimize the cost and duration of clinical trials. This review outlines the key in vitro PK/PD and animal infection models which have been extensively used in antibiotic discovery and development. These models have shown great potential in accelerating drug development programs and will continue to make significant contributions to antibiotic development

    Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii

    Get PDF
    The objective of this study was to determine the comparative pharmacodynamics of four different carbapenems in combination with polymyxin B (PMB) against carbapenem-resistant Acinetobacter baumannii isolates using time–kill experiments at two different inocula. Two A. baumannii strains (03-149-1 and N16870) with carbapenem minimum inhibitory concentrations (MICs) ranging from 8 to 64 mg/L were investigated in 48-h time–kill experiments using starting inocula of 106 CFU/mL and 108 CFU/mL. Concentration arrays of ertapenem, doripenem, meropenem and imipenem at 0.25×, 0.5×, 1×, 1.5× and 2× published maximum serum concentration (Cmax) values (Cmax concentrations of 12, 21, 48 and 60 mg/L, respectively) were investigated in the presence of 1.5 mg/L PMB. Use of carbapenems without PMB resulted in drastic re-growth. All carbapenem combinations were able to achieve a ≥3 log10 CFU/mL reduction by 4 h against both strains at 106 CFU/mL, whereas maximum reductions against strain 03-149-1 at 108 CFU/mL were 1.0, 3.2, 2.2 and 3.3 log10 CFU/mL for ertapenem, doripenem, meropenem and imipenem, respectively. None of the combinations were capable of reducing 108 CFU/mL of N16870 by ≥2 log10 CFU/mL. Ertapenem combinations consistently displayed the least activity, whereas doripenem, meropenem and imipenem combinations had similar activities that were poorly predicted by carbapenem MICs. As doripenem, meropenem, or imipenem displayed similar pharmacodyanmics in combination, the decision of which carbapenem to use in combination with PMB may be based on toxicodynamic profiles if drastic discordance in MICs is not present

    Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii

    Get PDF
    ABSTRACT Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B ( t 1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of −1.25, −1.43, −2.84, −2.84, and −3.40 log 10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an f AUC 0–24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections

    Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii : pharmacodynamics of new dosing strategies

    Get PDF
    Polymyxin B is being increasingly utilized as a last resort against resistant Gram-negative bacteria. We examined the pharmacodynamics of novel dosing strategies for polymyxin B combinations to maximize efficacy and minimize the emergence of resistance and drug exposure against Acinetobacter baumannii

    High-intensity meropenem combinations with polymyxin B: new strategies to overcome carbapenem resistance in Acinetobacter baumannii

    Get PDF
    The pharmacodynamics of polymyxin/carbapenem combinations against carbapenem-resistant Acinetobacter baumannii (CRAB) are largely unknown. Our objective was to determine whether intensified meropenem regimens in combination with polymyxin B enhance killing and resistance suppression of CRAB

    Optimization and evaluation of piperacillin plus tobramycin combination dosage regimens againstfor patients with altered pharmacokineticsthe hollow-fiber infection model and mechanism-based modeling

    Get PDF
    Augmented renal clearance (ARC) in critically-ill patients can result in suboptimal drug exposures and treatment failure. Combination dosage regimens accounting for ARC have never been optimized and evaluated againstusing the hollow-fiber infection model (HFIM). Using aisolate from a critically-ill patient and static concentration time-kill experiments (SCTK), we studied clinically relevant piperacillin and tobramycin concentrations, alone and in combinations, at two inocula (10and 10CFU/mL) over 72h. We subsequently evaluated the effect of optimized piperacillin (4 g q4h, 0.5h infusion) plus tobramycin (5 mg/kg q24h, 7 mg/kg q24h and 10 mg/kg q48h as 0.5h infusions) regimens on killing and regrowth in the HFIM, simulating a creatinine clearance of 250 mL/min. Mechanism-based modeling was performed in S-ADAPT. In SCTKs, piperacillin plus tobramycin (except combinations with 8 mg/liter tobramycin at low inoculum) achieved synergistic killing (≥2 logthe most active monotherapy at 48h and 72h) and prevented regrowth. Piperacillin monotherapy (4 g q4h) in the HFIM provided 2.4 loginitial killing followed by regrowth at 24h with resistance emergence. Tobramycin monotherapies displayed rapid initial killing (≥5 logat 13h) followed by extensive regrowth. As predicted by mechanism-based modeling, the piperacillin plus tobramycin dosage regimens were synergistic and provided ≥5 logkilling with resistance suppression over 8 days in the HFIM. Optimized piperacillin plus tobramycin regimens provided significant bacterial killing and suppressed resistance emergence. These regimens appear highly promising for effective and early treatment, even in the near-worst case scenario of ARC

    Substantial impact of altered pharmacokinetics in critically Ill patients on the antibacterial effects of meropenem evaluated via the dynamic hollow-fiber infection model

    Get PDF
    Critically ill patients frequently have substantially altered pharmacokinetics compared to non-critically ill patients. We investigated the impact of pharma-cokinetic alterations on bacterial killing and resistance for commonly used meropenem dosing regimens. A Pseudomonas aeruginosa isolate (MICmeropenem 0.25 mg/liter) was studied in the hollow-fiber infection model (inoculum similar to 10(7.5) CFU/ml; 10 days). Pharmacokinetic profiles representing critically ill patients with augmented renal clearance (ARC), normal, or impaired renal function (creatinine clearances of 285, 120, or similar to 10 ml/min, respectively) were generated for three meropenem regimens (2, 1, and 0.5 g administered as 8-hourly 30-min infusions), plus 1 g given 12 hourly with impaired renal function. The time course of total and less-susceptible populations and MICs were determined. Mechanism-based modeling (MBM) was performed using S-ADAPT. All dosing regimens across all renal functions produced similar initial bacterial killing (5 x MIC) = 56 and 69%, fC(min)/MIC = 32-fold increases in MIC) accompanied all regrowth. Bacterial counts remained suppressed across 10 days with normal (2-g 8-hourly regimen) and impaired (all regimens) renal function (fT >5 x MIC >= 82%, fC(min)/MIC >= 2). The MBM successfully described bacterial killing and regrowth for all renal functions and regimens simultaneously. Optimized dosing regimens, including extended infusions and/or combinations, supported by MBM and Monte Carlo simulations, should be evaluated in the context of ARC to maximize bacterial killing and suppress resistance emergence

    Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System

    Get PDF
    Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations
    • …
    corecore