357 research outputs found
On the Magnetic Nature of Quantum Point Contacts
We present results for a model that describes a quantum point contact. We
show how electron-electron correlations, within the unrestricted Hartree-Fock
approximation, generate a magnetic moment in the point contact. Having
characterized the magnetic structure of the contact, we map the problem onto a
simple one-channel model and calculate the temperature dependence of the
conductance for different gate voltages. Our results are in good agreement with
experimental results obtained in GaAs devices and support the idea of Kondo
effect in these systems.Comment: 7 pages, 4 figure
Localized Spins on Graphene
The problem of a magnetic impurity, atomic or molecular, absorbed on top of a
carbon atom in otherwise clean graphene is studied using the numerical
renormalization group. The spectral, thermodynamic, and scattering properties
of the impurity are described in detail. In the presence of a small magnetic
field, the low energy electronic features of graphene make possible to inject
spin polarized currents through the impurity using a scanning tunneling
microscope (STM). Furthermore, the impurity scattering becomes strongly spin
dependent and for a finite impurity concentration it leads to spin polarized
bulk currents and a large magnetoresistance. In gated graphene the impurity
spin is Kondo screened at low temperatures. However, at temperatures larger
than the Kondo temperature, the anomalous magnetotransport properties are
recovered.Comment: 4+ pages, 4 figures. Added reference
Partial preservation of chiral symmetry and colossal magnetoresistance in adatom doped graphene
We analyze the electronic properties of adatom doped graphene in the low
impurity concentration regime. We focus on the Anderson localized regime and
calculate the localization length () as a function of the electron doping
and an external magnetic field. The impurity states hybridize with carbon's
states and form a partially filled band close to the Dirac point. Near
the impurity band center, the chiral symmetry of the system's effective
Hamiltonian is partially preserved which leads to a large enhancement of .
The sensitivity of transport properties, namely Mott's variable range hopping
scale , to an external magnetic field perpendicular to the graphene sheet
leads to a colossal magnetoresistance effect, as observed in recent
experiments.Comment: 5 pages, 4 figs. Few comments and references added. To appear in PR
Magnetoconductance through a vibrating molecule in the Kondo regime
The effect of a magnetic field on the equilibrium spectral and transport
properties of a single-molecule junction is studied using the numerical
renormalization group method. The molecule is described by the
Anderson-Holstein model in which a single vibrational mode is coupled to the
electron density. The effect of an applied magnetic field on the conductance in
the Kondo regime is qualitatively different in the weak and strong
electron-phonon coupling regimes. In the former case, the Kondo resonance is
split and the conductance is strongly suppressed by a magnetic field , with the Kondo temperature. In the strong
electron-phonon coupling regime a charge analog of the Kondo effect develops.
In this case the Kondo resonance is not split by the field and the conductance
in the Kondo regime is enhanced in a broad range of values of .Comment: 6 pages, 4 figure
Transport through quantum dots in mesoscopic circuits
We study the transport through a quantum dot, in the Kondo Coulomb blockade
valley, embedded in a mesoscopic device with finite wires. The quantization of
states in the circuit that hosts the quantum dot gives rise to finite size
effects. These effects make the conductance sensitive to the ratio of the Kondo
screening length to the wires length and provide a way of measuring the Kondo
cloud. We present results obtained with the numerical renormalization group for
a wide range of physically accessible parameters.Comment: 4 pages, 5 figure
Electronic Transport through Magnetic Molecules with Soft Vibrating Modes
The low-temperature transport properties of a molecule are studied in the
field-effect transitor geometry. The molecule has an internal mechanical mode
that modulates its electronic levels and renormalizes both the interactions and
the coupling to the electrodes. For a soft mechanical mode the spin
fluctuations in the molecule are dominated by the bare couplings while the
valence changes are determined by the dressed energies. In this case, the
transport properties present an anomalous behavior and the Kondo temperature
has a weak gate voltage dependence. These observations are in agreement with
recent experimental data.Comment: 4 pages, 3 figures, accepted in PRB R
Magnetic Moment Formation in Quantum Point Contacts
We study the formation of local magnetic moments in quantum point contacts.
Using a Hubbard-like model to describe point contacts formed in a two
dimensional system, we calculate the magnetic moment using the unrestricted
Hartree approximation. We analyze different type of potentials to define the
point contact, for a simple square potential we calculate a phase diagram in
the parameter space (Coulomb repulsion - gate voltage). We also present an
analytical calculation of the susceptibility to give explicit conditions for
the occurrence of a local moment, we present a simple scaling argument to
analyze how the stability of the magnetic moment depends on the point contact
dimensions.Comment: 7 pages, 2 figure
Tunable Charge and Spin Seebeck Effects in Magnetic Molecular Junctions
We study the charge and spin Seebeck effects in a spin-1 molecular junction
as a function of temperature (T), applied magnetic field (H), and magnetic
anisotropy (D) using Wilson's numerical renormalization group. A hard-axis
magnetic anisotropy produces a large enhancement of the charge Seebeck
coefficient Sc (\sim k_B/|e|) whose value only depends on the residual
interaction between quasiparticles in the low temperature Fermi-liquid regime.
In the underscreened spin-1 Kondo regime, the high sensitivity of the system to
magnetic fields makes it possible to observe a sizable value for the spin
Seebeck coefficient even for magnetic fields much smaller than the Kondo
temperature. Similar effects can be obtain in C60 junctions where the control
parameter is the gap between a singlet and a triplet molecular state.Comment: 5 pages, 4 figure
- …