11 research outputs found
Prediction of cognition in Parkinson's disease with a clinical-genetic score: a longitudinal analysis of nine cohorts
Cognitive decline is a debilitating manifestation of disease progression in Parkinson's disease. We aimed to develop a clinical-genetic score to predict global cognitive impairment in patients with the disease.In this longitudinal analysis, we built a prediction algorithm for global cognitive impairment (defined as Mini Mental State Examination [MMSE] â¤25) using data from nine cohorts of patients with Parkinson's disease from North America and Europe assessed between 1986 and 2016. Candidate predictors of cognitive decline were selected through a backward eliminated Cox's proportional hazards analysis using the Akaike's information criterion. These were used to compute the multivariable predictor on the basis of data from six cohorts included in a discovery population. Independent replication was attained in patients from a further three independent longitudinal cohorts. The predictive score was rebuilt and retested in 10â000 training and test sets randomly generated from the entire study population.3200 patients with Parkinson's disease who were longitudinally assessed with 27â022 study visits between 1986 and 2016 in nine cohorts from North America and Europe were assessed for eligibility. 235 patients with MMSE â¤25 at baseline and 135 whose first study visit occurred more than 12 years from disease onset were excluded. The discovery population comprised 1350 patients (after further exclusion of 334 with missing covariates) from six longitudinal cohorts with 5165 longitudinal visits over 12¡8 years (median 2¡8, IQR 1¡6-4¡6). Age at onset, baseline MMSE, years of education, motor exam score, sex, depression, and β-glucocerebrosidase (GBA) mutation status were included in the prediction model. The replication population comprised 1132 patients (further excluding 14 patients with missing covariates) from three longitudinal cohorts with 19â127 follow-up visits over 8¡6 years (median 6¡5, IQR 4¡1-7¡2). The cognitive risk score predicted cognitive impairment within 10 years of disease onset with an area under the curve (AUC) of more than 0¡85 in both the discovery (95% CI 0¡82-0¡90) and replication (95% CI 0¡78-0¡91) populations. Patients scoring in the highest quartile for cognitive risk score had an increased hazard for global cognitive impairment compared with those in the lowest quartile (hazard ratio 18¡4 [95% CI 9¡4-36¡1]). Dementia or disabling cognitive impairment was predicted with an AUC of 0¡88 (95% CI 0¡79-0¡94) and a negative predictive value of 0¡92 (95% 0¡88-0¡95) at the predefined cutoff of 0¡196. Performance was stable in 10â000 randomly resampled subsets.Our predictive algorithm provides a potential test for future cognitive health or impairment in patients with Parkinson's disease. This model could improve trials of cognitive interventions and inform on prognosis.National Institutes of Health, US Department of Defense.We thank all study participants, their families, and friends for their support and participation, and our study coordinators. The co-investigators and contributors from Parkinson's Disease Biomarkers Program, Harvard Biomarkers Study, Drug Interaction with Genes in Parkinson's Disease (DIGPD), Parkinson Research Examination of CEP-1347 Trial (PreCEPT) and a longitudinal follow-up of the PRECEPT study cohort (PostCEPT), Parkinsonism Incidence, Cognition and Non-motor heterogeneity in Cambridgeshire (PICNICS), Cambridgeshire Parkinson's Incidence from GP to Neurologist (CamPaIGN), PROfiling PARKinson's disease study (PROPARK), as well as acknowledgments for Parkinson's Progression Marker Initiative and Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) are listed in the appendix. This work was supported in part by National Institutes of Health grants U01 NS082157, U01NS095736 (to CRS), US Department of Defense grants W81XWH-1â0007 (BR) and W81XWH-15â10007 (to CRS); MEMO Hoffman Foundation (to CRS); Brigham and Women's Hospital Departmental Funds (to BB). The Harvard Biomarkers Study is supported by the Harvard NeuroDiscovery Center, the Parkinson's Disease Biomarkers Program U01 NS082157, U01NS100603 of the National Institute of Neurological Disorders and Stroke (NINDS), and the Massachusetts Alzheimer's Disease Research Center P50 AG005134 grant of the National Institute on Aging, Harvard Aging Brain Study grant P01 AG036694. The PreCEPT and PostCEPT cohort was funded by Cephalon Inc and Lundbeck for the parent PRECEPT clinical trial and follow-up PostCEPT cohort, and the Department of Defense Neurotoxin Exposure Treatment Parkinson's Research Program (W23RRYX7022N606), NINDS Data and Organizing Center's (NS050095), the Parkinson's Disease Foundation (New York, NY, USA). Additional funding information for the PreCEPT and PostCEPT cohort and corresponding investigators is listed in Ravina et al. The CamPaIGN and PICNICS studies received funding support from the Wellcome Trust, MRC, Parkinson's UK, Cure-PD, the Patrick Berthoud Trust, the Van Geest Foundation, and National Institute for Health Research funding of a Biomedical Research Centre at the University of Cambridge and Addenbrooke's Hospital. DIGPD cohort was promoted by the Assistance Publique HĂ´pitaux de Paris, and funded by the French clinical research hospital programme (code AOR08010). The research leading to these results has received funding from the programme Investissements d'Avenir ANR-10-IAIHU-06. DATATOP was supported by NIH grant NS24778. The PROPARK study was funded by the Prinses Beatrix Fonds (project number WAR05â0120), the van Alkemade-Keuls Foundation (Stichting Alkemade-Keuls), and the International Parkinson Foundation (Stichting ParkinsonFonds)
Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease
A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 x 10(-11)), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 x 10(-8)) and WWOX (HR = 2.12, P = 2.37 x 10(-8)) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.A genome-wide survival study identifies variants at RIMS2 associated with progression of Parkinson's disease to dementia and highlights divergence in the genetic architecture of disease onset and progression.Neurological Motor Disorder
Parkinson's disease in GTP cyclohydrolase 1 mutation carriers.
"This is the peer reviewed version of the following article: Mencacci et al. 2014. Parkinsonâs disease in GTP cyclohydrolase 1 mutation carriers, which has been published in final form at Brain, Volume 137, Issue 9, 1 September 2014, Pages 2480â2492, https://doi.org/10.1093/brain/awu179. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-Ď-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.This study was supported by the Wellcome Trust/Medical Research Council (MRC) Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium. This project was also supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre and the Grigioni Foundation for Parkinson Disease. This work was also supported in part by the Intramural Research Programs of the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Aging (NIA), and the National Institute of Environmental Health Sciences both part of the National Institutes of Health, Department of Health and Human Services; project numbers Z01-AG000949-02 and Z01-ES101986. In addition this work was supported by the Department of Defense (award W81XWH-09-2-0128), and the Michael J Fox Foundation for Parkinsonâs Disease Research. This work was supported by National Institutes of Health grants R01NS037167, R01CA141668, American Parkinson Disease Association (APDA); Barnes Jewish Hospital Foundation; Greater St Louis Chapter of the APDA; Hersenstichting Nederland; Neuroscience Campus Amsterdam; the Deutsche Forschungsgemeinschaft (SFB 936). This study was also funded by the German National Genome Network (NGFNplus number 01GS08134, German Ministry for Education and Research); by the German Federal Ministry of Education and Research (NGFN 01GR0468, PopGen); and 01EW0908 in the frame of ERA-NET NEURON and Helmholtz Alliance Mental Health in an Ageing Society (HA-215), which was funded by the Initiative and Networking Fund of the Helmholtz Association. Funding for the project was provided by the Wellcome Trust under award 076113, 085475 and 090355. The work was also funded in part by Parkinson's UK (Grants 8047 and J-1101) and the Medical Research Council UK (G0700943, G1100643) for H.R.M and S.J.L
Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's
Neurological Motor Disorder
Mitochondrial haplogroups and cognitive progression in Parkinson's disease
Liu et al. report that specific mitochondrial haplogroups are associated with the progression of cognitive decline in patients with Parkinson's disease, but not with the progression of motor impairment. Mitochondrial haplotypes may thus be useful for stratifying patients according to their risk of cognitive decline.Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U-# had a 41% lower risk of cognitive progression with P = 2.42 x 10(-6) compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 x 10(-5). Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.Neurological Motor Disorder
Parkinson's disease in GTP cyclohydrolase 1 mutation carriers
GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-Ď-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease
Recommended from our members
Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's
Objective: We hypothesized that specific mutations in the βâglucocerebrosidase gene (GBA) causing neuropathic Gaucher's disease (GD) in homozygotes lead to aggressive cognitive decline in heterozygous Parkinson's disease (PD) patients, whereas nonâneuropathic GD mutations confer intermediate progression rates. Methods: A total of 2,304 patients with PD and 20,868 longitudinal visits for up to 12.8 years (median, 4.1) from seven cohorts were analyzed. Differential effects of four types of genetic variation in GBA on longitudinal cognitive decline were evaluated using mixed random and fixed effects and Cox proportional hazards models. Results: Overall, 10.3% of patients with PD and GBA sequencing carried a mutation. Carriers of neuropathic GD mutations (1.4% of patients) had hazard ratios (HRs) for global cognitive impairment of 3.17 (95% confidence interval [CI], 1.60â6.25) and a hastened decline in MiniâMental State Exam scores compared to noncarriers (p = 0.0009). Carriers of complex GBA alleles (0.7%) had an HR of 3.22 (95% CI, 1.18â8.73; p = 0.022). By contrast, the common, nonâneuropathic N370S mutation (1.5% of patients; HR, 1.96; 95% CI, 0.92â4.18) or nonpathogenic risk variants (6.6% of patients; HR, 1.36; 95% CI, 0.89â2.05) did not reach significance. Interpretation Mutations in the GBA gene pathogenic for neuropathic GD and complex alleles shift longitudinal cognitive decline in PD into âhigh gear.â These findings suggest a relationship between specific types of GBA mutations and aggressive cognitive decline and have direct implications for improving the design of clinical trials. Ann Neurol 2016;80:674â68
Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's
Objective: We hypothesized that specific mutations in the β-glucocerebrosidase gene (GBA) causing neuropathic Gaucher's disease (GD) in homozygotes lead to aggressive cognitive decline in heterozygous Parkinson's disease (PD) patients, whereas non-neuropathic GD mutations confer intermediate progression rates. Methods: A total of 2,304 patients with PD and 20,868 longitudinal visits for up to 12.8 years (median, 4.1) from seven cohorts were analyzed. Differential effects of four types of genetic variation in GBA on longitudinal cognitive decline were evaluated using mixed random and fixed effects and Cox proportional hazards models. Results: Overall, 10.3% of patients with PD and GBA sequencing carried a mutation. Carriers of neuropathic GD mutations (1.4% of patients) had hazard ratios (HRs) for global cognitive impairment of 3.17 (95% confidence interval [CI], 1.60â6.25) and a hastened decline in MiniâMental State Exam scores compared to noncarriers (p = 0.0009). Carriers of complex GBA alleles (0.7%) had an HR of 3.22 (95% CI, 1.18â8.73; p = 0.022). By contrast, the common, non-neuropathic N370S mutation (1.5% of patients; HR, 1.96; 95% CI, 0.92â4.18) or nonpathogenic risk variants (6.6% of patients; HR, 1.36; 95% CI, 0.89â2.05) did not reach significance. Interpretation: Mutations in the GBA gene pathogenic for neuropathic GD and complex alleles shift longitudinal cognitive decline in PD into âhigh gear.â These findings suggest a relationship between specific types of GBA mutations and aggressive cognitive decline and have direct implications for improving the design of clinical trials. Ann Neurol 2016;80:674â685