16 research outputs found
Recommended from our members
A Multi-Actor Literature Review on Alternative and Sustainable Food Systems for the Promotion of Cereal Biodiversity
Organic and low-input food systems are emerging worldwide in answer to the sustainability crisis of the conventional agri-food sector. “Alternative” systems are based on local, decentralized approaches to production and processing, regarding quality and health, and short supply-chains for products with strong local identities. Diversity is deeply embedded in these food systems, from the agrobiodiversity grown in farmers’ fields, which improves resilience and adaptation, to diverse approaches, contexts and actors in food manufacturing and marketing. Diversity thus becomes a cross-sectoral issue which acknowledges consumers’ demand for healthy products. In the framework of the European project “CERERE, CEreal REnaissance in Rural Europe: embedding diversity in organic and low-input food systems”, the paper aims at reviewing recent research on alternative and sustainable food systems by adopting an innovative and participatory multi-actor approach; this has involved ten practitioners and twenty-two researchers from across Europe and a variety of technical backgrounds in the paper and analysis stages. The participatory approach is the main innovation and distinctive feature of this literature review. Partners selected indeed what they perceived as most relevant in order to facilitate a transition towards more sustainable and diversity based cereal systems and food chains. This includes issues related to alternative food networks, formal and informal institutional settings, grass root initiatives, consumer involvement and, finally, knowledge exchange and sustainability. The review provides an overview of recent research that is relevant to CERERE partners as well as to anyone interested in alternative and sustainable food systems. The main objective of this paper was indeed to present a narrative of studies, which can form the foundation for future applied research to promote alternative methods of cereal production in Europe.Peer reviewe
Rule change incidence on physiological characteristics of elite basketball players: a 10-year-period investigation
International audienc
Plasticity of rat motoneuron rhythmic firing properties with varying levels of afferent and descending inputs
International audienc
Differential modulation of myosin heavy chain phenotype in an inactive extensor and flexor muscle of adult rats
The effects of chronic neuromuscular inactivity on the phenotype and size of muscle fibres in a fast ankle extensor (medial gastrocnemius, MG) and a fast ankle flexor (tibialis anterior, TA) muscle of the rat hindlimb were determined. Inactivity was produced by spinal cord isolation (SI), i.e. complete spinal cord transections at a mid-thoracic and high sacral level and bilateral deafferentation between the transection sites. After 90 days of SI, the MG and TA muscle weights were 53 and 45% lower than in age-matched controls. Overall mean fibre sizes in the deep (close to the bone) and superficial (away from the bone) regions were ∼60 and 65% smaller in the MG and ∼40 and 50% smaller in the TA of SI than control rats, respectively. The myosin heavy chain (MHC) composition shifted towards the faster isoforms after SI: the MG showed an increase in both types IIx (20%) and IIb (23%), whereas the TA showed a marked increase in type IIx (94%) and a decrease in type IIb (18%) MHC. Both muscles in SI rats showed no type IIa and only one MG muscle had ∼5% type I MHC. These results show that prolonged inactivity has a stronger effect on a fast extensor compared with a fast flexor in the rat hindlimb. The larger decrease in mass and fibre size in the MG than the TA most probably reflects the larger impact of chronic inactivity on the normally more highly recruited extensor than flexor muscle. The primary shift to type IIb MHC in the MG and type IIx MHC in the TA indicate a different default mode for an inactive extensor vs. flexor muscle, and may reflect differing activity-independent neural influences, i.e. neurotrophic factors, on muscle fibre phenotype in extensors vs. flexors