2,462 research outputs found

    A purple patch for evidence-based health policy?

    Get PDF
    The global focus on nation states' responses to the COVID-19 pandemic has rightly highlighted the importance of science and evidence as the basis for policy action. Those with a lifelong passion for evidence-based policy (EBP) have lauded Australia's and other nations' policy responses to COVID-19 as a breakthrough moment for the cause. This article reflects on the complexity of the public policy process, the perspectives of its various actors, and draws on Alford's work on the Blue, Red and Purple zones to propose a more nuanced approach to advocacy for EBP in health. We contend that the pathway for translation of research evidence into routine clinical practice is relatively linear, in contrast to the more complex course for translation of evidence to public policy - much to the frustration of health researchers and EBP advocates. Cairney's description of the characteristics of successful policy entrepreneurs offers useful guidance to advance EBP and we conclude with proposing some practical mechanisms to support it. Finally, we recommend that researchers and policy makers spend more time in the Purple zone to enable a deeper understanding of, and mutual respect for, the unique contributions made by research, policy and political actors to sound public policy

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    Hypercrosslinked materials

    Get PDF
    This chapter describes the chemistry of hypercrosslinked materials, and presents a description of their synthesis, defining physico-chemical features and their most important applications. The synthesis section will examine the different monomers, precursor polymers, reagents and synthetic strategies used to prepare hypercrosslinked materials. Each synthesis section also details the chemical and morphological properties of the hypercrosslinked materials and the main field of application

    Hypercrosslinked materials : preparation, characterisation and applications

    Get PDF
    This review article provides an overview of hypercrosslinking technology. In particular, it covers the preparation and characterisation of hypercrosslinked materials and their applications. The synthesis section examines the different monomers, precursor polymers and reagents used to prepare hypercrosslinked materials, but also the different synthetic approaches disclosed in the literature. The various chemical modification reactions relevant to this area are also reviewed. Several examples of applications for hypercrosslinked materials are described; these applications are grouped into thematic areas such as chromatography, gas storage and the trapping of organic contaminants

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    The number of beams in IMRT - theoretical investigations and implications for single-arc IMRT

    Full text link
    The first purpose of this paper is to shed some new light on the old question of selecting the number of beams in intensity-modulated radiation therapy (IMRT). The second purpose is to illuminate the related issue of discrete static beam angles vs. rotational techniques, which has recently re-surfaced due to the advancement of volumetric arc therapy (VMAT). A specific objective is to find analytical expressions that allow one to address the points raised above. To make the problem mathematically tractable, it is assumed that the depth dose is flat and that the lateral dose profile can be approximated by polynomials, specifically Chebyshev polynomials of the first kind, of finite degree. The application of methods known from image reconstruction then allows one to answer the first question above as follows: The required number of beams is determined by the maximum degree of the polynomials used in the approximation of the beam profiles, which is a measure of the dose variability. There is nothing to be gained by using more beams. In realistic cases, in which the variability of the lateral dose profile is restricted in several ways, the required number of beams is of the order of 10 to 20. The consequence of delivering the beams with a `leaf sweep' technique during continuous rotation of the gantry, as in VMAT, is also derived in analytical form. The main effect is that the beams fan out, but the effect near the axis of rotation is small. This result can serve as a theoretical justification of VMAT. Overall the analytical derivations in this paper, albeit based on strong simplifications, provide new insights into, and a deeper understanding of, the beam angle problem in IMRT

    Segre Types of Symmetric Two-tensors in n-Dimensional Spacetimes

    Get PDF
    Three propositions about Jordan matrices are proved and applied to algebraically classify the Ricci tensor in n-dimensional Kaluza-Klein-type spacetimes. We show that the possible Segre types are [1,1...1], [21...1], [31\ldots 1], [z\bar{z}1...1] and degeneracies thereof. A set of canonical forms for the Segre types is obtained in terms of semi-null bases of vectors.Comment: 14 pages, LaTeX, replaced due to a LaTex erro

    Limits of the energy-momentum tensor in general relativity

    Get PDF
    A limiting diagram for the Segre classification of the energy-momentum tensor is obtained and discussed in connection with a Penrose specialization diagram for the Segre types. A generalization of the coordinate-free approach to limits of Paiva et al. to include non-vacuum space-times is made. Geroch's work on limits of space-times is also extended. The same argument also justifies part of the procedure for classification of a given spacetime using Cartan scalars.Comment: LaTeX, 21 page
    corecore