24 research outputs found

    Whole-Body Analysis of a Viral Infection: Vascular Endothelium is a Primary Target of Infectious Hematopoietic Necrosis Virus in Zebrafish Larvae

    Get PDF
    The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV), a rhabdovirus that represents an important threat to the salmonid culture industry. When incubated at 24°C, a permissive temperature for virus replication, larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28°C that is non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models

    FTR83, a member of the large fish-specific finTRIM family, triggers IFN pathway and counters viral infection

    Get PDF
    Publisher Copyright: © 2017 Langevin, Aleksejeva, Houel, Briolat, Torhy, Lunazzi, Levraud and Boudinot.Tripartite motif (TRIM) proteins are involved in various cellular functions and constitute key factors of the antiviral innate immune response. TRIM proteins can bind viral particles directly, sending them to degradation by the proteasome, or ubiquitinate signaling molecules leading to upregulation of innate immunity. TRIM proteins are present in across metazoans but are particularly numerous in vertebrates where genes comprising a B30.2 domain have been often duplicated. In fish, a TRIM subset named finTRIM is highly diversified, with large gene numbers and clear signatures of positive selection in the B30.2 domain suggesting they may be involved in antiviral mechanisms. finTRIM provides a beautiful model to investigate the primordial implication of B30.2 TRIM subsets in the arsenal of vertebrate antiviral defenses. We show here that ftr83, a zebrafish fintrim gene mainly expressed in the gills, skin and pharynx, encodes a protein affording a potent antiviral activity. In vitro, overexpression of FTR83, but not of its close relative FTR82, induced IFN and IFN-stimulated gene expression and afforded protection against different enveloped and non-enveloped RNA viruses. The kinetics of IFN induction paralleled the development of the antiviral activity, which was abolished by a dominant negative IRF3 mutant. In the context of a viral infection, FTR83 potentiated the IFN response. Expression of chimeric proteins in which the B30.2 domain of FTR83 and the non-protective FTR82 had been exchanged, showed that IFN upregulation and antiviral activity requires both the Ring/BBox/Coiled coil domain (supporting E3 ubiquitin ligase) and the B30.2 domain of FTR83. Finally, loss of function experiments in zebrafish embryos confirms that ftr83 mediates antiviral activity in vivo. Our results show that a member of the largest TRIM subset observed in fish upregulates type I IFN response and afford protection against viral infections, supporting that TRIMs are key antiviral factors across vertebrates.publishersversionPeer reviewe

    Resistance to a Rhabdovirus (VHSV) in Rainbow Trout: Identification of a Major QTL Related to Innate Mechanisms

    Get PDF
    Chantier qualité GAHealth control is a major issue in animal breeding and a better knowledge of the genetic bases of resistance to diseases is needed in farm animals including fish. The detection of quantitative trait loci (QTL) will help uncovering the genetic architecture of important traits and understanding the mechanisms involved in resistance to pathogens. We report here the detection of QTL for resistance to Viral Haemorrhagic Septicaemia Virus (VHSV), a major threat for European aquaculture industry. Two induced mitogynogenetic doubled haploid F2 rainbow trout (Oncorhynchus mykiss) families were used. These families combined the genome of susceptible and resistant F0 breeders and contained only fully homozygous individuals. For phenotyping, fish survival after an immersion challenge with the virus was recorded, as well as in vitro virus replication on fin explants. A bidirectional selective genotyping strategy identified seven QTL associated to survival. One of those QTL was significant at the genome-wide level and largely explained both survival and viral replication in fin explants in the different families of the design (up to 65% and 49% of phenotypic variance explained respectively). These results evidence the key role of innate defence in resistance to the virus and pave the way for the identification of the gene(s) responsible for resistance. The identification of a major QTL also opens appealing perspectives for selective breeding of fish with improved resistance

    Genetic basis of resistance to viral diseases in rainbow trout

    No full text
    absen

    Trims and antiviral immunity in fish: A FINTRIM inducing constitutive IFN signaling is expressed at surfaces exposed to pathogens

    No full text
    International audienceThe tripartite - motif - protein (TRIM) family includes many key components of the antiviral arsenal expressed in mammals; antiviral TRIMs mediate intrinsic viral restriction at diverse points of the viral cycle, or positively regulate innate immune signaling pathways. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. Our previous survey of fish TRIM genes in fish identifie d subsets with different evolutionary dynamics, with several subsets highly diversified li ke th e finTRIMs. We show here that a zebrafish finTRIM gene constitutively expressed in the gills, skin and pharynx, encodes a protein that strongly up - regulates the type I interferon (IFN) pathway. While it is not IFN - inducible, its in vivo expression in gills of healthy fish correlates with that of type I IFN. In vitro , overexpression of this finTRIM induce s IFN and IFN - stimulated gene expression, and affords protection against different enveloped and non - enveloped RNA viruses. This antiviral activity is IFN - dependent, and is abolished by a dominant negative IRF3 mutant. Our work indicates that TRIM proteins contribute to the establishment of antiviral immunity , possibly by permanent type I IFN stimulation in exposed tissues . Hence TRIMs might create a loc al anti - viral environment at sites exposed to pathogens, a mechanism participating to the regionalization of immunity. Our data also reveal that TRIMs were involved in antiviral immunity before the divergence between bony fish and tetrapods, early in Verte brate evolution
    corecore