413 research outputs found

    CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies.

    Get PDF
    Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8(+) T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8(+) T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8(+) T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8(+) T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease

    Hsc70-induced changes in clathrin-auxilin cage structure suggest a role for clathrin light chains in cage disassembly

    Get PDF
    The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly

    Parental leave in European Companies

    Get PDF

    12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791

    Full text link
    Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H]=+0.39+-0.06 (Cunha et al. 2015). We used high resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE). The advantage of using high-resolution spectra in the H-band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity and evolutionary status.Comment: Accepted for publication in MNRAS, 9 pages, 4 figures, 2 table

    Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function

    Get PDF
    Bacterial neonatal meningitis results in high mortality and morbidity rates for those affected. Although improvements in diagnosis and treatment have led to a decline in mortality rates, morbidity rates have remained relatively unchanged. Bacterial resistance to antibiotics in this clinical setting further underlines the need for developing other technologies, such as phage therapy. We exploited an in vitro phage therapy model for studying bacterial neonatal meningitis based on Escherichia coli (E. coli) EV36, bacteriophage (phage) K1F and human cerebral microvascular endothelial cells (hCMECs). We show that phage K1F is phagocytosed and degraded by constitutive- and PAMP-dependent LC3-assisted phagocytosis and does not induce expression of inflammatory cytokines TNFα, IL-6, IL-8 or IFNβ. Additionally, we observed that phage K1F temporarily decreases the barrier resistance of hCMEC cultures, a property that influences the barrier permeability, which could facilitate the transition of immune cells across the endothelial vessel in vivo. Collectively, we demonstrate that phage K1F can infect intracellular E. coli EV36 within hCMECs without themselves eliciting an inflammatory or defensive response. This study illustrates the potential of phage therapy targeting infections such as bacterial neonatal meningitis and is an important step for the continued development of phage therapy targeting antibiotic-resistant bacterial infections generally

    Response of deep-sea deposit-feeders to detrital inputs: A comparison of two abyssal time-series sites

    Get PDF
    Biological communities on the abyssal plain are largely dependent on detritus from the surface ocean as their main source of energy. Seasonal fluctuations in the deposition of that detritus cause temporal variations in the quantity and quality of food available to these communities, altering their structure and the activity of the taxa present. However, direct observations of energy acquisition in relation to detritus availability across megafaunal taxa in abyssal communities are few. We used time-lapse photography and coincident measurement of organic matter flux from water column sediment traps to examine the impact of seasonal detrital inputs on resource acquisition by the deposit feeding megafauna assemblages at two sites: Station M (Northeast Pacific, 4000 m water depth) and the Porcupine Abyssal Plain Sustained Observatory (PAP-SO, Northeast Atlantic 4850 m water depth). At Station M, studied over 18-months, the seasonal particle flux was followed by a salp deposition event. At that site, diversity in types of deposit feeding was related to seabed cover by detritus. At PAP-SO, studied over 30 months, the seasonal particle flux consisted of two peaks annually. While the two study sites were similar in mean flux (~8.0 mgC m−2 d−1), the seasonality in the flux was greater at PAP-SO. The mean overall tracking at PAP-SO was five times that of Station M (1.9 and 0.4 cm2 h−1, respectively); both are likely underestimated because tracking by some common taxa at both sites could not be quantified. At both sites, responses of deposit-feeding megafauna to the input of detritus were not consistent across the taxa studied. The numerically-dominant megafauna (e.g. echinoids, large holothurians and asteroids) did not alter their deposit feeding in relation to the seasonality in detrital supply. Taxa for which deposit feeding occurrence or rate were correlated to seasonality in particle flux were relatively uncommon (e.g. enteropneusta), known to cache food (e.g. echiurans), or to be highly selective for fresh detritus (e.g. the holothurian Oneirophanta mutabilis). Thus, the degree of seasonality in deposit feeding appeared to be taxon-specific and related to natural history characteristics such as feeding and foraging modes

    The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris

    Get PDF
    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L-1 n-BPBA; ≥50 mg L-1 tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L-1 n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L-1) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L-1 stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future

    The structure of the core NuRD repression complex provides insights into its interaction with chromatin

    Get PDF
    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromati
    corecore