507 research outputs found

    On the coupling between spinning particles and cosmological gravitational waves

    Full text link
    The influence of spin in a system of classical particles on the propagation of gravitational waves is analyzed in the cosmological context of primordial thermal equilibrium. On a flat Friedmann-Robertson-Walker metric, when the precession is neglected, there is no contribution due to the spin to the distribution function of the particles. Adding a small tensor perturbation to the background metric, we study if a coupling between gravitational waves and spin exists that can modify the evolution of the distribution function, leading to new terms in the anisotropic stress, and then to a new source for gravitational waves. In the chosen gauge, the final result is that, in the absence of other kind of perturbations, there is no coupling between spin and gravitational waves.Comment: 4 pages, to appear in Proceedings of the II Stueckelberg Workshop - Int. J. Mod. Phys.

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies

    Full text link
    Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation-reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.Comment: 19 pages, small corrections, equivalent to published versio

    Spin precession in the Schwarzschild spacetime: circular orbits

    Full text link
    We study the behavior of nonzero rest mass spinning test particles moving along circular orbits in the Schwarzschild spacetime in the case in which the components of the spin tensor are allowed to vary along the orbit, generalizing some previous work.Comment: To appear on Classical and Quantum Gravity, 200

    Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics

    Full text link
    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics with its instantaneous Wigner 3-spaces and with its description of the particle world-lines by means of derived non-canonical predictive coordinates. In it we quantize the frozen Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative variables in an abstract (frame-independent) internal space whose existence is implied by Wigner-covariance. The formalism takes care of the properties of both relativistic bound states and scattering ones. There is a natural solution to the \textit{relativistic localization problem}. The non-relativistic limit leads to standard quantum mechanics but with a frozen Hamilton-Jacobi description of the center of mass. Due to the \textit{non-locality} of the Poincar\'e generators the resulting theory of relativistic entanglement is both \textit{kinematically non-local and spatially non-separable}: these properties, absent in the non-relativistic limit, throw a different light on the interpretation of the non-relativistic quantum non-locality and of its impact on foundational problems.Comment: 73 pages, includes revision

    Aharonov-Bohm interference in the presence of metallic mesoscopic cylinders

    Get PDF
    This work studies the interference of electrons in the presence of a line of magnetic flux surrounded by a normal-conducting mesoscopic cylinder at low temperature. It is found that, while there is a supplementary phase contribution from each electron of the mesoscopic cylinder, the sum of these individual supplementary phases is equal to zero, so that the presence of a normal-conducting mesoscopic ring at low temperature does not change the Aharonov-Bohm interference pattern of the incident electron. It is shown that it is not possible to ascertain by experimental observation that the shielding electrons have responded to the field of an incident electron, and at the same time to preserve the interference pattern of the incident electron. It is also shown that the measuring of the transient magnetic field in the region between the two paths of an electron interference experiment with an accuracy at least equal to the magnetic field of the incident electron generates a phase uncertainty which destroys the interference pattern.Comment: 15 pages, 5 Postscript figure

    Perturbative Expansion in the Galilean Invariant Spin One-Half Chern-Simons Field Theory

    Get PDF
    A Galilean Chern-Simons field theory is formulated for the case of two interacting spin-1/2 fields of distinct masses M and M'. A method for the construction of states containing N particles of mass M and N' particles of mass M' is given which is subsequently used to display equivalence to the spin-1/2 Aharonov-Bohm effect in the N = N' =1 sector of the model. The latter is then studied in perturbation theory to determine whether there are divergences in the fourth order (one loop) diagram. It is found that the contribution of that order is finite (and vanishing) for the case of parallel spin projections while the antiparallel case displays divergences which are known to characterize the spin zero case in field theory as well as in quantum mechanics.Comment: 14 pages LaTeX, including 2 figures using eps

    Multipole moments in Kaluza-Klein theories

    Get PDF
    This paper contains discussion of the problem of motion of extended i.e. non point test bodies in multidimensional space. Extended bodies are described in terms of so called multipole moments. Using approximated form of equations of motion for extended bodies deviation from geodesic motion is derived. Results are applied to special form of space-time.Comment: 11 pages, AMS-TeX, few misprints corrected, to appear in Classical and Quantum Gravit

    Curvature-spin coupling from the semi-classical limit of the Dirac equation

    Full text link
    The notion of a classical particle is inferred from Dirac quantum fields on a curved space-time, by an eikonal approximation and a localization hypothesis for amplitudes. This procedure allows to define a semi-classical version of the spin-tensor from internal quantum degrees of freedom, which has a Papapetrou-like coupling with the curvature.Comment: 4 pages, Proceedings of the II Stueckelberg worksho
    • …
    corecore