38 research outputs found

    Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute hemorrhagic conjunctivitis is a common disease in China. As a notifiable disease, cases are registered by ophthalmologists on the AHC surveillance system. An AHC outbreak caused by CA24v was observed in Guangdong Province in 2007 by the National Disease Supervision Information Management System. Three years later, a larger outbreak occurred in Guangdong during the August-October period (2010). To characterize the outbreak and compare the genetic diversity of CA24v, which was determined to be the cause of the outbreak, the epidemiology and the molecular characterization of CA24v were analyzed in this study.</p> <p>Results</p> <p>A total of 69,635 cases were reported in the outbreak. 73.5% of index cases originated from students, children in kindergarten and factory workers, with the ≦ 9 age group at the highest risk. The male to female ratio was 1.84:1 among 0-19 years. 56 conjunctival swabs were collected to identify the causative agent from five cities with the AHC outbreak. 30 virus strains were isolated, and two of the genomes had the highest identity values (95.8%) with CA24v genomes. Four CA24v genotypes were identified by phylogenetic analysis for the VP1 and 3C regions. CA24v which caused the outbreak belonged to genotype IV. Furthermore, full nucleotide sequences for four representative isolates in 2010 and 2007 were determined and compared. 20 aa mutations, two nt insertions and one nt deletion were observed in the open reading frame, with 5'- and 3'- UTR respectively between them.</p> <p>Conclusions</p> <p>CA24v was determined to be the pathogen causing the outbreak and belongs to genotype IV. VP1 is more informative than 3C<sup>Pro </sup>for describing molecular epidemiology and we hypothesize that accumulative mutations may have promoted the outbreak.</p

    The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases

    Get PDF
    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to the surveillance of pathogens circulating in both human and animal populations and assess how frequently they are exchanged. This infrastructure will facilitate systematic investigations of pathogen ecology and evolution, enhance understanding of viral cross-species transmission events, and identify relevant risk factors and drivers of zoonotic disease emergence

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Promoting Scientific Transparency to Facilitate the Safe and Open International Exchange of Biological Materials and Electronic Data

    No full text
    Scientific communication, collaboration and progress are enhanced through the exchange of data, materials and ideas. Recent advances in technology, commercial proprietary discovery and current local and global events (e.g., emerging human, animal and plant disease outbreaks) have increased the demand, and shortened optimal timelines for material and data exchange, both domestically and internationally. Specific circumstances in each case, such as the type of material being transferred (i.e., select agent, disease-causing agent and assessed biosafety risk level) and current events, dictate the level of agreements and requirements. Recent lessons learned from emerging disease issues and emergencies have demonstrated that human engagement and increased science diplomacy are needed to reinforce and sustain biosafety and biosecurity practices and processes, for better scientific transparency. A reasonable and accepted framework of guidance for open sharing of data and materials is needed that can be applied on multiple cooperative levels, including global and national. Although numerous agreement variations already exist for the exchange of materials and data, regulations to guide the development of both the language and implementation of such agreements are limited. Without such regulations, scientific exchange is often restricted, limiting opportunities for international capacity building, collaboration and cooperation. In this article, we present and discuss several international case histories that illustrate the complex nature of scientific exchange. Recommendations are made for a dual bottom-up and top-down approach that includes all stakeholders from beginning negotiation stages to emphasize trust and cooperation. The broader aim of this approach is to increase international scientific transparency and trust in a safe and open manner, supporting increased global one health security

    Occurrence of measles genotype D8 during a 2014 outbreak in Banjarmasin, South Kalimantan, Indonesia

    Get PDF
    Objectives: An outbreak of measles symptoms occurring in children in Banjarmasin, South Kalimantan, Indonesia in 2014 was investigated. Methods: Nasal swabs were collected from 23 children (median age 41 months) with fever and other symptoms of measles hospitalized in Ulin General Hospital and Islamic Hospital, Banjarmasin, South Kalimantan. Viral RNA was extracted for cDNA synthesis, followed by PCR and sequencing using paramyxovirus family consensus and N-gene primers. Results: Sixteen measles-positive patients (70%) were identified. Fifteen virus strains belonged to genotype D8 and the remaining one strain was confirmed as belonging to genotype D9. Conclusion: Measles virus genotype D8 was detected in an outbreak of measles in South Kalimantan, Indonesia, in 2014

    Assessing Climate Change Impact on Ecosystems and Infectious Disease: Important Roles for Genomic Sequencing and a One Health Perspective

    No full text
    Changes in the Earth&rsquo;s climate and weather continue to impact the planet&rsquo;s ecosystems, including the interface of infectious disease agents with their hosts and vectors. Environmental disasters, natural and human-made activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently, changes in habitat, displaced populations, and environmental stresses that affect the survival of species are amplified over time. The recurrence and spread of vector-borne (e.g., mosquito, tick, aphid) human, animal, and plant pathogens to new geographic locations are also influenced by climate change. The distribution and range of humans, agricultural animals and plants, wildlife and native plants, as well as vectors, parasites, and microbes that cause neglected diseases of the tropics as well as other global regions are also impacted. In addition, genomic sequencing can now be applied to detect signatures of infectious pathogens as they move into new regions. Molecular detection assays complement metagenomic sequencing to help us understand the microbial community found within the microbiomes of hosts and vectors, and help us uncover mechanistic relationships between climate variability and pathogen transmission. Our understanding of, and responses to, such complex dynamics and their impacts can be enhanced through effective, multi-sectoral One Health engagement coupled with applications of both traditional and novel technologies. Concerted efforts are needed to further harness and leverage technology that can identify and track these impacts of climate changes in order to mitigate and adapt to their effects

    Scrub typhus, a disease with increasing threat in Guangdong, China.

    No full text
    There has been a rapid increase in the number of scrub typhus cases in Guangdong Province, China. For this reason, an epidemiologic study was conducted to understand the characteristics of scrub typhus epidemics in Guangdong. From 2006 to 2013, the incidence of human cases increased from 0.4321 to 3.5917 per 100,000 with a bimodal peak in human cases typically occurring between May and November. To detect the prevalence of Orientia tsutsugamushi among suspected human cases and rodents, we performed ELISA tests of IgM/IgG and nested PCR tests on 59 whole blood samples from the suspected cases and 112 spleen samples from the rodents. Suspected cases tested positive for anti-O. tsutsugamushi IgM and IgG 66.1% (39/59) and 50.8% (30/59) of the time, respectively. Additionally, 20.3% (12/59) of blood samples and 13.4% (15/112) of spleen samples were positive for PCR. Phylogenetic analysis revealed that there were four definable clusters among the 27 nucleotide sequences of the 56-kDa antigen genes: 44.4% Karp (12/27), 25.9% Kato (7/27), 22.2% Gilliam (6/27) and 7.4% TA763 (2/27). We concluded many suspected cases may result in diagnostic errors; therefore, it is necessary to perform laboratory tests on suspected cases in hospitals. The high infection rate of O. tsutsugamushi among the limited rodents tested suggested that further rodent sampling throughout the province is necessary to further define high-risk areas. Furthermore, the multiple co-circulating genotypes of O. tsutsugamushi play a key role in the pervasiveness of scrub typhus in the Guangdong area

    Achieving Health Security and Threat Reduction through Sharing Sequence Data

    No full text
    With the rapid development and broad applications of next-generation sequencing platforms and bioinformatic analytical tools, genomics has become a popular area for biosurveillance and international scientific collaboration. Governments from countries including the United States (US), Canada, Germany, and the United Kingdom have leveraged these advancements to support international cooperative programs that aim to reduce biological threats and build scientific capacity worldwide. A recent conference panel addressed the impacts of the enhancement of genomic sequencing capabilities through three major US bioengagement programs on international scientific engagement and biosecurity risk reduction. The panel contrasted the risks and benefits of supporting the enhancement of genomic sequencing capabilities through international scientific engagement to achieve biological threat reduction and global health security. The lower costs and new bioinformatic tools available have led to the greater application of sequencing to biosurveillance. Strengthening sequencing capabilities globally for the diagnosis and detection of infectious diseases through mutual collaborations has a high return on investment for increasing global health security. International collaborations based on genomics and shared sequence data can build and leverage scientific networks and improve the timeliness and accuracy of disease surveillance reporting needed to identify and mitigate infectious disease outbreaks and comply with international norms. Further efforts to promote scientific transparency within international collaboration will improve trust, reduce threats, and promote global health security
    corecore