31 research outputs found

    Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute hemorrhagic conjunctivitis is a common disease in China. As a notifiable disease, cases are registered by ophthalmologists on the AHC surveillance system. An AHC outbreak caused by CA24v was observed in Guangdong Province in 2007 by the National Disease Supervision Information Management System. Three years later, a larger outbreak occurred in Guangdong during the August-October period (2010). To characterize the outbreak and compare the genetic diversity of CA24v, which was determined to be the cause of the outbreak, the epidemiology and the molecular characterization of CA24v were analyzed in this study.</p> <p>Results</p> <p>A total of 69,635 cases were reported in the outbreak. 73.5% of index cases originated from students, children in kindergarten and factory workers, with the ≦ 9 age group at the highest risk. The male to female ratio was 1.84:1 among 0-19 years. 56 conjunctival swabs were collected to identify the causative agent from five cities with the AHC outbreak. 30 virus strains were isolated, and two of the genomes had the highest identity values (95.8%) with CA24v genomes. Four CA24v genotypes were identified by phylogenetic analysis for the VP1 and 3C regions. CA24v which caused the outbreak belonged to genotype IV. Furthermore, full nucleotide sequences for four representative isolates in 2010 and 2007 were determined and compared. 20 aa mutations, two nt insertions and one nt deletion were observed in the open reading frame, with 5'- and 3'- UTR respectively between them.</p> <p>Conclusions</p> <p>CA24v was determined to be the pathogen causing the outbreak and belongs to genotype IV. VP1 is more informative than 3C<sup>Pro </sup>for describing molecular epidemiology and we hypothesize that accumulative mutations may have promoted the outbreak.</p

    Occurrence of measles genotype D8 during a 2014 outbreak in Banjarmasin, South Kalimantan, Indonesia

    Get PDF
    Objectives: An outbreak of measles symptoms occurring in children in Banjarmasin, South Kalimantan, Indonesia in 2014 was investigated. Methods: Nasal swabs were collected from 23 children (median age 41 months) with fever and other symptoms of measles hospitalized in Ulin General Hospital and Islamic Hospital, Banjarmasin, South Kalimantan. Viral RNA was extracted for cDNA synthesis, followed by PCR and sequencing using paramyxovirus family consensus and N-gene primers. Results: Sixteen measles-positive patients (70%) were identified. Fifteen virus strains belonged to genotype D8 and the remaining one strain was confirmed as belonging to genotype D9. Conclusion: Measles virus genotype D8 was detected in an outbreak of measles in South Kalimantan, Indonesia, in 2014

    Assessing Climate Change Impact on Ecosystems and Infectious Disease: Important Roles for Genomic Sequencing and a One Health Perspective

    No full text
    Changes in the Earth&rsquo;s climate and weather continue to impact the planet&rsquo;s ecosystems, including the interface of infectious disease agents with their hosts and vectors. Environmental disasters, natural and human-made activities raise risk factors that indirectly facilitate infectious disease outbreaks. Subsequently, changes in habitat, displaced populations, and environmental stresses that affect the survival of species are amplified over time. The recurrence and spread of vector-borne (e.g., mosquito, tick, aphid) human, animal, and plant pathogens to new geographic locations are also influenced by climate change. The distribution and range of humans, agricultural animals and plants, wildlife and native plants, as well as vectors, parasites, and microbes that cause neglected diseases of the tropics as well as other global regions are also impacted. In addition, genomic sequencing can now be applied to detect signatures of infectious pathogens as they move into new regions. Molecular detection assays complement metagenomic sequencing to help us understand the microbial community found within the microbiomes of hosts and vectors, and help us uncover mechanistic relationships between climate variability and pathogen transmission. Our understanding of, and responses to, such complex dynamics and their impacts can be enhanced through effective, multi-sectoral One Health engagement coupled with applications of both traditional and novel technologies. Concerted efforts are needed to further harness and leverage technology that can identify and track these impacts of climate changes in order to mitigate and adapt to their effects

    Achieving Health Security and Threat Reduction through Sharing Sequence Data

    No full text
    With the rapid development and broad applications of next-generation sequencing platforms and bioinformatic analytical tools, genomics has become a popular area for biosurveillance and international scientific collaboration. Governments from countries including the United States (US), Canada, Germany, and the United Kingdom have leveraged these advancements to support international cooperative programs that aim to reduce biological threats and build scientific capacity worldwide. A recent conference panel addressed the impacts of the enhancement of genomic sequencing capabilities through three major US bioengagement programs on international scientific engagement and biosecurity risk reduction. The panel contrasted the risks and benefits of supporting the enhancement of genomic sequencing capabilities through international scientific engagement to achieve biological threat reduction and global health security. The lower costs and new bioinformatic tools available have led to the greater application of sequencing to biosurveillance. Strengthening sequencing capabilities globally for the diagnosis and detection of infectious diseases through mutual collaborations has a high return on investment for increasing global health security. International collaborations based on genomics and shared sequence data can build and leverage scientific networks and improve the timeliness and accuracy of disease surveillance reporting needed to identify and mitigate infectious disease outbreaks and comply with international norms. Further efforts to promote scientific transparency within international collaboration will improve trust, reduce threats, and promote global health security
    corecore