10 research outputs found

    Preclinical Aspects on Magnetic Iron Oxide Nanoparticles and Their Interventions as Anticancer Agents: Enucleation, Apoptosis and Other Mechanism

    Get PDF
    The broad area of magnetic iron oxide nanoparticle (M-IONP) applications and their exclusive physico-chemical characteristics (superparamagnetic properties per se, solubility and stability in aqueous solutions, and high bioavailability in vivo) make these nanoparticles suitable candidates for biomedical uses. The most employed magnetic iron oxides in the biomedical field are magnetite and maghemite. Cancer represents a complex pathology that implies multiple mechanisms and signaling pathways, this complexity being responsible for the increased resistance to therapy and the lack of an effective curative treatment. A potential useful alternative was considered to be the use of magnetic iron nanoparticles. The M-IONPs proved to be effective as contrast agents in magnetic resonance imaging, as drug delivery carriers for different therapeutic agents, in magnetic cell separation assays, and are suitable to be engineered in terms of size, targeted delivery and substance release. Moreover, their in vivo administration was considered safe, and recent studies indicated their efficiency as anticancer agents. This chapter aims to furnish an overview regarding the physico-chemical properties of M-IONPs (mainly magnetite, maghemite and hematite), the synthesis methods and their in vitro biological impact on healthy and cancer cell lines, by describing their potential mechanism of action—enucleation, apoptosis or other mechanisms

    Cutaneous Melanoma—A Long Road from Experimental Models to Clinical Outcome: A Review

    No full text
    Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis

    A Comparative Study of Melissa officinalis

    No full text
    Melissa officinalis L. has attracted an increased interest in recent years due to its multiple pharmacological effects. This study aimed to compare two M. officinalis ethanolic extracts, obtained from leaves and stems, with regard to their antioxidant activity, total phenolic content, and cytotoxic effects. M. officinalis ethanolic extracts showed a very good antioxidant activity in the DPPH test, correlated with the content in total phenols: higher in the case of M. officinalis from leaves extract (32.76 mg GAE/g) and lower for M. officinalis from stems extract (8.4 mg GAE/g). The lemon balm extracts exerted a cytotoxic effect on breast cancer cells (MDA-MB-231) even at low concentrations (100 μg/mL), whereas, in the case of healthy HaCat cells, M. officinalis leaves extract only displayed cytotoxicity at much higher concentrations (500 and 1000 μg/mL) and M. officinalis stems extracts were highly cytotoxic (starting at 100 μg/mL). In addition, the extracts exerted inhibitory effects on cell migration and proliferation. These results provide information that confirms the high potential of M. officinalis as a source of chemopreventive agents. Moreover, these data can be considered a solid background for further in vivo studies involving mice bearing breast tumors

    Adipokines—A Cohort Prospective Study in Children with Severe Burns

    No full text
    Burns generate every year an important burden of morbidity, being a major global public health problem through prolonged hospitalization, complications, and increased mortality. This study’s purpose was to evaluate the serum levels of three adipokines and to establish significant correlations with other circulating molecules and with some clinical parameters. We evaluated 32 children with severe burns (over 25% total burned surface area—TBSA) at 48 h, day 10, and day 21 post burn, and 21 controls. The serum levels of adiponectin, resistin, leptin, tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and C-reactive protein (CRP) (among nine other biochemical parameters) were detected by Multiplex technique. Significant statistical differences were obtained for resistin and leptin compared to the control group, in different moments of measurements. Adiponectin serum levels presented statistically significant correlations with hot liquid mechanism of burn, the Revised Baux score, TBSA, resistin, PAI-1, CRP, TNF-α, and triglycerides (TGLs) serum levels. Resistin serum levels presented statistically significant correlations with adiponectin, CRP, PAI-1, leptin, and TNF-α. Additionally, we found statistically significant correlations between leptin serum levels and length of hospitalization, TNF-α, resistin, adiponectin, and PAI-1 serum levels. In severely burned children, adiponectin, resistin, and leptin specifically correlate with clinical parameters and with proteins involved in the systemic inflammatory response and the hypermetabolic response

    Germinated and Ungerminated Seeds Extract from Two Lupinus Species: Biological Compounds Characterization and In Vitro and In Vivo Evaluations

    Get PDF
    In recent years, nutraceuticals attracted a great amount of attention in the biomedical research due to their significant contribution as natural agents for prevention of various health issues. Ethanolic extracts from the ungerminated and germinated seeds of Lupinus albus L. and Lupinus angustifolius L. were analyzed for the content in isoflavones (genistein) and cinnamic acid derivatives. Additionally, the extracts were evaluated for antimicrobial, antiproliferative, and anti-inflammatory properties, using in vitro and in vivo tests. Germination proved to be a method of choice in increasing the amount of genistein and cinnamic acid derivatives in both Lupinus albus L. and Lupinus angustifolius L. seeds. Biological evaluation of all vegetal extracts revealed a weak therapeutic potential for both ungerminated and germinated seeds
    corecore