3 research outputs found

    Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry

    No full text
    Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule–ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics

    Discovery of Novel 3,3-Disubstituted Piperidines as Orally Bioavailable, Potent, and Efficacious HDM2-p53 Inhibitors

    No full text
    A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by <b>21</b> has been developed from the initial lead <b>1</b>. Research focused on optimization of a crucial HDM2 Trp23–ligand interaction led to the identification of 2-(trifluoromethyl)­thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors <b>3</b>, <b>10</b>, and <b>21</b> is described

    Structure-Based Design of an Iminoheterocyclic β‑Site Amyloid Precursor Protein Cleaving Enzyme (BACE) Inhibitor that Lowers Central Aβ in Nonhuman Primates

    No full text
    We describe successful efforts to optimize the in vivo profile and address off-target liabilities of a series of BACE1 inhibitors represented by <b>6</b> that embodies the recently validated fused pyrrolidine iminopyrimidinone scaffold. Employing structure-based design, truncation of the cyanophenyl group of <b>6</b> that binds in the S3 pocket of BACE1 followed by modification of the thienyl group in S1 was pursued. Optimization of the pyrimidine substituent that binds in the S2′–S2″ pocket of BACE1 remediated time-dependent CYP3A4 inhibition of earlier analogues in this series and imparted high BACE1 affinity. These efforts resulted in the discovery of difluorophenyl analogue <b>9</b> (MBi-4), which robustly lowered CSF and cortex Aβ<sub>40</sub> in both rats and cynomolgus monkeys following a single oral dose. Compound <b>9</b> represents a unique molecular shape among BACE inhibitors reported to potently lower central Aβ in nonrodent preclinical species
    corecore