40 research outputs found

    Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast <it>Saccharomyces cerevisiae </it>has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism.</p> <p>Results</p> <p>Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of <it>CTI6</it>, <it>DAP1</it>, <it>MRS4 </it>and <it>YHR045W </it>in iron metabolism.</p> <p>Conclusion</p> <p>Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional components. This should be taken into consideration when designing and analyzing data from these type of studies. We used this and other published data to develop a molecular interaction network of iron metabolism in yeast.</p

    Reticular synthesis and the design of new materials

    Full text link
    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62718/1/nature01650.pd

    Safety profile of recombinant canarypox HIV vaccines

    No full text
    Attenuated poxviruses have been developed for use as candidate vaccine vectors. ALVAC, a strain of the Avipoxvirus canarypox, has been extensively evaluated as a vector for vaccines against the human immunodeficiency virus type 1 (HIV-1). This report presents the safety and reactogenicity data derived from 11 multicenter, randomized controlled trials of ALVAC-HIV vaccines conducted by the HIV Vaccine Trials Network (HVTN) and its predecessor, the AIDS Vaccine Evaluation Group (AVEG). Five different ALVAC vaccine constructs were tested among 1497 volunteers. Reactogenicity was similar for different ALVAC constructs. Local reactions of any grade to ALVAC vaccines were common. However, fewer than 2% of vaccinees had severe local responses, and less than 1% experienced severe local pain or tenderness. Systemic responses were mild and transient. As combination vaccine regimens are in common use, we also evaluated side effects of ALVAC vectors given in combination with a recombinant subunit protein. No significant differences were noted in the reactogenicity of ALVAC given with or without a recombinant envelope subunit vaccine. Black, non-Hispanic and male recipients of ALVAC-HIV reported less pain following vaccination than White, non-Hispanics and females, respectively. ALVAC-HIV vaccines are well tolerated at tested doses. The reactogenicity profiles are comparable to those reported for existing vaccines licensed for use among adults. Reactogenicity does not appear to be related to the number or type of inserted genes, and did not vary between different ALVAC constructs. © 2003 Elsevier Ltd. All rights reserved

    Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice

    No full text
    Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH–Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways

    Antibody blockade of activin type II receptors preserves skeletal muscle mass and enhances fat loss during GLP-1 receptor agonism

    No full text
    Objective: Glucagon-like peptide 1 (GLP-1) receptor agonists reduce food intake, producing remarkable weight loss in overweight and obese individuals. While much of this weight loss is fat mass, there is also a loss of lean mass, similar to other approaches that induce calorie deficit. Targeting signaling pathways that regulate skeletal muscle hypertrophy is a promising avenue to preserve lean mass and modulate body composition. Myostatin and Activin A are TGFβ-like ligands that signal via the activin type II receptors (ActRII) to antagonize muscle growth. Pre-clinical and clinical studies demonstrate that ActRII blockade induces skeletal muscle hypertrophy and reduces fat mass. In this manuscript, we test the hypothesis that combined ActRII blockade and GLP-1 receptor agonism will preserve muscle mass, leading to improvements in skeletomuscular and metabolic function and enhanced fat loss. Methods: In this study, we explore the therapeutic potential of bimagrumab, a monoclonal antibody against ActRII, to modify body composition alone and during weight loss induced by GLP-1 receptor agonist semaglutide in diet-induced obese mice. Mechanistically, we define the specific role of the anabolic kinase Akt in mediating the hypertrophic muscle effects of ActRII inhibition in vivo. Results: Treatment of obese mice with bimagrumab induced a ∼10 % increase in lean mass while simultaneously decreasing fat mass. Daily treatment of obese mice with semaglutide potently decreased body weight; this included a significant decrease in both muscle and fat mass. Combination treatment with bimagrumab and semaglutide led to superior fat mass loss while simultaneously preserving lean mass despite reduced food intake. Treatment with both drugs was associated with improved metabolic outcomes, and increased lean mass was associated with improved exercise performance. Deletion of both Akt isoforms in skeletal muscle modestly reduced, but did not prevent, muscle hypertrophy driven by ActRII inhibition. Conclusions: Collectively, these data demonstrate that blockade of ActRII signaling improves body composition and metabolic parameters during calorie deficit driven by GLP-1 receptor agonism and demonstrate the existence of Akt-independent pathways supporting muscle hypertrophy in the absence of ActRII signaling

    Kinetic and Spectroscopic Studies of N694C Lipoxygenase: A Probe of the Substrate Activation Mechanism of a Nonheme Ferric Enzyme

    Get PDF
    Lipoxygenases (LOs) comprise a class of substrate activating mononuclear nonheme iron enzymes which catalyze the hydroperoxidation of unsaturated fatty acids. A commonly proposed mechanism for LO catalysis involves H-atom abstraction by an FeIII-OH- site, best described as a proton coupled electron transfer (PCET) process, followed by direct reaction of O2 with the resulting substrate radical to yield product. An alternative mechanism that has also been discussed involves the abstraction of a proton from the substrate by the FeIII-OH leading to a -organoiron intermediate, where the subsequent bond insertion of dioxygen into the C-Fe bond completes the reaction. H-atom abstraction is favored by a high E of the FeII/FeIII couple and high pKa of water bound to the ferrous state, while an organoiron mechanism would be favored by a low E (to keep the site oxidized) and a high pKa of water bound to the ferric state (to deprotonate the substrate). A first coordination sphere mutant of soybean LO (N694C) has been prepared and characterized by near-infrared circular dichroism (CD) and variable-temperature, variable-field (VTVH) magnetic circular dichroism (MCD) spectroscopies (FeII site), as well as UV/vis absorption, UV/vis CD, and electron paramagnetic resonance (EPR) spectroscopies (FeIII site). These studies suggest that N694C has a lowered E of the FeII/FeIII couple and a raised pKa of water bound to the ferric site relative to wild type soybean lipoxygenase-1 (WT sLO-1) which would favor the organoiron mechanism. However, the observation in N694C of a significant deuterium isotope effect, anaerobic reduction of iron by substrate, and a substantial decrease in kcat (~3000-fold) support H-atom abstraction as the relevant substrate-activation mechanism in sLO-1
    corecore