566 research outputs found

    Conducting-Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes

    Full text link
    An in vitro comparison of conducting-polymer nanotubes of poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(pyrrole) (PPy) and to their film counterparts is reported. Impedance, charge-capacity density (CCD), tendency towards delamination, and neurite outgrowth are compared. For the same deposition charge density, PPy films and nanotubes grow relatively faster vertically, while PEDOT films and nanotubes grow more laterally. For the same deposition charge density (1.44 C cm −2 ), PPy nanotubes and PEDOT nanotubes have lower impedance (19.5 ± 2.1 kΩ for PPy nanotubes and 2.5 ± 1.4 kΩ for PEDOT nanotubes at 1 kHz) and higher CCD (184 ± 5.3 mC cm −2 for PPy nanotubes and 392 ± 6.2 mC cm −2 for PEDOT nanotubes) compared to their film counterparts. However, PEDOT nanotubes decrease the impedance of neural-electrode sites by about two orders of magnitude (bare iridium 468.8 ± 13.3 kΩ at 1 kHz) and increase capacity of charge density by about three orders of magnitude (bare iridium 0.1 ± 0.5 mC cm −2 ). During cyclic voltammetry measurements, both PPy and PEDOT nanotubes remain adherent on the surface of the silicon dioxide while PPy and PEDOT films delaminate. In experiments of primary neurons with conducting-polymer nanotubes, cultured dorsal root ganglion explants remain more intact and exhibit longer neurites (1400 ± 95 µm for PPy nanotubes and 2100 ± 150 µm for PEDOT nanotubes) than their film counterparts. These findings suggest that conducting-polymer nanotubes may improve the long-term function of neural microelectrodes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65046/1/421_ftp.pd

    Journey to Burning Man

    Get PDF
    This comic book tells the story of four friends coping from personal trauma and stress as they embark on a journey of self-discovery and healing. The storyline focuses on character development and growth as they travel to the Burning Man festival in the Black Rock Desert of Nevada. This trip, and their desire to go in the first place, reflects open-mindedness and a willingness to engage in alternative forms of medicine beneficial to surviving and thriving after illness or injury

    Electrospinning Fundamentals: Optimizing Solution and Apparatus Parameters

    Get PDF
    Electrospun nanofiber scaffolds have been shown to accelerate the maturation, improve the growth, and direct the migration of cells in vitro. Electrospinning is a process in which a charged polymer jet is collected on a grounded collector; a rapidly rotating collector results in aligned nanofibers while stationary collectors result in randomly oriented fiber mats. The polymer jet is formed when an applied electrostatic charge overcomes the surface tension of the solution. There is a minimum concentration for a given polymer, termed the critical entanglement concentration, below which a stable jet cannot be achieved and no nanofibers will form - although nanoparticles may be achieved (electrospray). A stable jet has two domains, a streaming segment and a whipping segment. While the whipping jet is usually invisible to the naked eye, the streaming segment is often visible under appropriate lighting conditions. Observing the length, thickness, consistency and movement of the stream is useful to predict the alignment and morphology of the nanofibers being formed. A short, non-uniform, inconsistent, and/or oscillating stream is indicative of a variety of problems, including poor fiber alignment, beading, splattering, and curlicue or wavy patterns. The stream can be optimized by adjusting the composition of the solution and the configuration of the electrospinning apparatus, thus optimizing the alignment and morphology of the fibers being produced. In this protocol, we present a procedure for setting up a basic electrospinning apparatus, empirically approximating the critical entanglement concentration of a polymer solution and optimizing the electrospinning process. In addition, we discuss some common problems and troubleshooting techniques

    Nonalcoholic steatohepatitis is associated with an atherogenic lipoprotein subfraction profile

    Get PDF
    Background: Nonalcoholic steatohepatitis (NASH) carries an increased risk of cardiovascular disease (CVD) relative to the general population. We sought to evaluate whether differences in lipoprotein subfractions in obese patients with and without NASH contributes to this difference in CVD risk. Findings: Ion mobility analysis was performed on 78 individuals with obesity undergoing weight loss surgery. All individuals had standard of care liver biopsies performed during surgery. Patients with NASH had significantly smaller peak LDL diameter (P = 0.02, 219.0 Ã… vs. 222.6 Ã…), and levels of IDL2 (P = 0.01, 104. nmol/L vs. 133.4 nmol/L) and HDL2b (P = 0.05, 676.7 nmol/L vs. 880.1 nmol/L) compared to those without NASH. NASH patients had significantly higher LDL-IVb levels than those without NASH (P = 0.02, 49.0 nmol/L vs. 37.1 nmol/L). The inverse association of LDL peak diameter with NASH remained significant after adjustment for diabetes (P = 0.02). HDL2b levels were inversely correlated with hepatocyte ballooning and NASH and these remained significant after adjustment for diabetes (P = 0.0017 and P = 0.007, respectively). IDL2 levels were inversely correlated with NASH, hepatocyte ballooning and fibrosis stage but these were not significant after adjustment for diabetes. Conclusions: The lipoprotein subfraction profile in subjects with NASH is characterized by small peak LDL diameter, reduced HDL2b levels and elevated LDL-IVb levels. These changes may contribute to the increased CVD seen in patients with NASH

    RRx-001 in Refractory Small-Cell Lung Carcinoma: A Case Report of a Partial Response after a Third Reintroduction of Platinum Doublets.

    Get PDF
    RRx-001 is a pan-active, systemically nontoxic epigenetic inhibitor under investigation in advanced non-small cell lung cancer, small-cell lung cancer and high-grade neuroendocrine tumors in a Phase II clinical trial entitled TRIPLE THREAT (NCT02489903), which reexposes patients to previously effective but refractory platinum doublets after treatment with RRx-001. The purpose of this case study is first to report a partial response to carboplatin and etoposide in a patient with small-cell lung cancer pretreated with RRx-001, indicating episensitization or resensitization by epigenetic mechanisms, and second to discuss the literature related to small-cell lung cancer and episensitization

    Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth

    Full text link
    Nerve injury, a significant cause of disability, may be treated more effectively using nerve guidance channels containing longitudinally aligned fibers. Aligned, electrospun nanofibers direct the neurite growth of immortalized neural stem cells, demonstrating potential for directing regenerating neurites. However, no study of neurite guidance on these fibers has yet been performed with primary neurons. Here, we examined neurites from dorsal root ganglia explants on electrospun poly- L -lactate nanofibers of high, intermediate, and random alignment. On aligned fibers, neurites grew radially outward from the ganglia and turned to follow the fibers upon contact. Neurite guidance was robust, with neurites never leaving the fibers to grow on the surrounding cover slip. To compare the alignment of neurites to that of the nanofiber substrates, Fourier methods were used to quantify the alignment. Neurite alignment, however striking, was inferior to fiber alignment on all but the randomly aligned fibers. Neurites on highly aligned substrates were 20 and 16% longer than neurites on random and intermediate fibers, respectively. Schwann cells on fibers assumed a very narrow morphology compared to those on the surrounding coverslip. The robust neurite guidance demonstrated here is a significant step toward the use of aligned, electrospun nanofibers for nerve regeneration. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57401/1/31285_ftp.pd

    A Retrospective Study of the Investigation of Homicidal Childhood Asphyxial Deaths

    Full text link
    As one of the leading causes of traumatic deaths in newborns, infants, and young children, there is no anatomic or microscopic feature that is pathognomonic for asphyxial deaths. Instead, pathologists rely on investigation information, including confessions and/or witness statements, and potential evidence at the scene. Twenty cases of homicidal newborn, infant, and young children asphyxial deaths were reviewed, which included death and police investigation reports and autopsy reports, as well as histology slides of lung sections. This series of homicidal asphyxial deaths highlight that, in a vast majority of such cases, the final cause and manner of death rulings are dependent on confession by the perpetrator. Furthermore, this series highlights the possible role of histology to help forensic pathologists better certify asphyxial deaths. Finally, this series emphasizes important investigation points and considerations at autopsy during the investigation of asphyxial deaths in newborns, infants, and young children.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144651/1/jfo13666_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144651/2/jfo13666.pd
    • …
    corecore