5 research outputs found

    PCR thermocycling conditions utilized in the present work.

    No full text
    1<p>Conditions from a previous study <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-Milbury4" target="_blank">[22]</a>.</p

    Primer sequences used in this study.

    No full text
    1<p>Oligonucleotides (F) forward or (R) reverse.</p>2<p>Oligonucleotide sequences described before <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-Fredriksson1" target="_blank">[21]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-Milbury4" target="_blank">[22]</a>.</p>3<p>Oligonucleotides from Castellanos et al. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-CastellanosRizaldos1" target="_blank">[16]</a>.</p>4<p>Primer sequences described previously <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-Li1" target="_blank">[2]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051362#pone.0051362-Milbury3" target="_blank">[17]</a>.</p

    Temperature-tolerant COLD-PCR in emulsion, TT-fast-eCOLD-PCR: Enrichment of mutations in multiple DNA sequences in a single tube.

    No full text
    <p>A 5% mutation abundance was evaluated for <i>TP53</i> gene exons 6–9 by conventional PCR (left panels) and TT-fast-eCOLD-PCR (right panels). Duplicate experiments are depicted in each case. The enrichment of the mutations in all four exons is estimated from the chromatograms.</p

    Temperature-tolerant-fast-COLD-PCR in emulsion: Overview of the steps involved.

    No full text
    <p>Multiplex pre-amplification from genomic DNA; emulsification with gene-specific primers; mixing into a single tube; and temperature-tolerant emulsion-based fast-COLD-PCR.</p
    corecore