15 research outputs found

    Factors affecting match performance in professional australian football

    Full text link
    To determine the physical activity measures and skill-performance characteristics that contribute to coaches' perception of performance and player performance rank in professional Australian Football (AF). Design: Prospective, longitudinal. Methods: Physical activity profiles were assessed via microtechnology (GPS and accelerometer) from 40 professional AF players from the same team during 15 Australian Football League games. Skill-performance measure and player-rank scores (Champion Data Rank) were provided by a commercial statistical provider. The physical-performance variables, skill involvements, and individual player performance scores were expressed relative to playing time for each quarter. A stepwise multiple regression was used to examine the contribution of physical activity and skill involvements to coaches' perception of performance and player rank in AF. Results: Stepwise multiple-regression analysis revealed that 42.2% of the variance in coaches' perception of a player's performance could be explained by the skill-performance characteristics (player rank/min, effective kicks/min, pressure points/min, handballs/min, and running bounces/ min), with a small contribution from physical activity measures (accelerations/min) (adjusted R2 = .422, F6,282 = 36.054, P < .001). Multiple regression also revealed that 66.4% of the adjusted variance in player rank could be explained by total disposals/min, effective kicks/min, pressure points/min, kick clangers/min, marks/min, speed (m/min), and peak speed (adjusted R2 = .664, F7,281 = 82.289, P < .001). Increased physical activity throughout a match (speed [m/min] β - 0.097 and peak speed β - 0.116) negatively affects player rank in AF. Conclusions: Skill performance rather than increased physical activity is more important to coaches' perception of performance and player rank in professional AF. © 2014 Human Kinetics, Inc

    Comparison of anthropometry, upper-body strength, and lower-body power characteristics in different levels of australian football players

    Full text link
    © 2015 National Strength and Conditioning Association. The aim of this study was to compare the anthropometry, upper-body strength, and lower-body power characteristics in elite junior, sub-elite senior, and elite senior Australian Football (AF) players. Nineteen experienced elite senior (≥4 years Australian Football League [AFL] experience), 27 inexperienced elite senior (<4 years AFL experience), 22 sub-elite senior, and 21 elite junior AF players were assessed for anthropometric profile (fat-free soft tissue mass [FFSTM], fat mass, and bone mineral content) with dual-energy x-ray absorptiometry, upper-body strength (bench press and bench pull), and lower-body power (countermovement jump [CMJ] and squat jump with 20 kg). A 1-way analysis of variance assessed differences between the playing levels in these measures, whereas relationships between anthropometry and performance were assessed with Pearson's correlation. The elite senior and sub-elite senior players were older and heavier than the elite junior players (p ≤ 0.05). Both elite playing groups had greater total FFSTM than both the sub-elite and junior elite players; however, there were only appendicular FFSTM differences between the junior elite and elite senior players (p < 0.001). The elite senior playing groups were stronger and had greater CMJ performance than the lower level players. Both whole-body and regional FFSTM were correlated with bench press (r 0.43-0.64), bench pull (r 0.58-0.73), and jump squat performance measures (r 0.33-0.55). Australian Football players' FFSTM are different between playing levels, which are likely because of training and partly explain the observed differences in performance between playing levels highlighting the importance of optimizing FFSTM in young players

    Mercury levels in birds and small rodents from Las Orquideas National Natural Park, Colombia

    No full text
    Mercury (Hg) is a heavy metal known as one of the most toxic elements on the planet. The importance of Hg on living organisms resides on its biomagnification ability. Artisanal gold extraction activities release substantial amounts of this metal, polluting the ecosystems. To assess the impact of gold mining in Las Orquideas National Natural Park (Colombia), total Hg (T-Hg) levels were evaluated from 37 bird and 8 small rodent species collected at two sites within the boundaries of the Natural Park (Abriaqui and Frontino municipalities) that have experienced some gold-extraction history. The mean concentration of T-Hg in bird feathers from both sites was 0.84 ± 0.05 µg/g fw. Differences between species were found according to diet. Total Hg levels were greater on insectivorous (1.00 ± 0.08 µg/g fw), followed by nectarivorous (0.73 ± 0.07 µg/g fw) and frugivorus (0.57 ± 0.09 µg/g fw) species. These Hg levels were greater than those found in feathers from a control sample belonging to the species Penelope perspicax (0.53 ± 0.03 µg/g fw), a frugivorous species living at the Otun Quimbaya Fauna and Flora Sanctuary, a forest without known gold mining. Mercury concentrations in the livers of small rodents were greater in specimens from Frontino (0.15 ± 0.01 µg/g fw) than those from Abriaqui (0.11 ± 0.01 µg/g fw), but levels were not different between species. These results indicate that Hg in birds depends mainly on their diet, but geographical location may affect Hg concentration in rodents. Moreover, Hg sources in natural parks of Colombia may not rely solely on gold mining, atmospheric deposition, among others factors, could be influencing its accumulation in biota. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    Congenital Defects of Domestic and Feral Animals

    No full text

    Amyloid-β Production: Major Link Between Oxidative Stress and BACE1

    No full text

    The Nervous System

    No full text
    corecore