22 research outputs found

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p < 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD

    Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain

    Get PDF
    In addition to its effects in the hypothalamus to control body weight, leptin is involved in the regulation of neuronal function, development and survival. Recent findings have highlighted the neuroprotective effects of leptin against ischemic brain injury; however, to date, little is known about the role performed by the signal transducer and activator of transcription (STAT)-3, a major mediator of leptin receptor transduction pathway in the brain, in the beneficial effects of the hormone. Our data demonstrate that systemic acute administration of leptin produces neuroprotection in rats subjected to permanent middle cerebral artery occlusion (MCAo), as revealed by a significant reduction of the brain infarct volume and neurological deficit up to 7 days after the induction of ischemia. By combining a subcellular fractionation approach with immunohistofluorescence, we observe that neuroprotection is associated with a cell type-specific modulation of STAT3 phosphorylation in the ischemic cortex. The early enhancement of nuclear phospho-STAT3 induced by leptin in the astrocytes of the ischemic penumbra may contribute to a beneficial effect of these cells on the evolution of tissue damage. In addition, the elevation of phospho-STAT3 induced by leptin in the neurons after 24 h MCAo is associated with an increased expression of tissue inhibitor of matrix metalloproteinases-1 in the cortex, suggesting its possible involvement to the neuroprotection produced by the adipokine

    CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    Get PDF
    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes

    Temporal-spatial profiling of pedunculopontine galanin-cholinergic neurons in the lactacystin rat model of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates a multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor- and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, whilst being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilising the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration

    Extensive retreat of Greenland tidewater glaciers 2000-2010

    Get PDF
    Overall mass loss from the Greenland ice sheet nearly doubled during the early 2000s resulting in an increased contribution to sea-level rise, with this step-change being mainly attributed to the widespread frontal retreat and accompanying dynamic thinning of tidewater glaciers. Changes in glacier calving-front positions are easily derived from remotely sensed imagery and provide a record of dynamic change. However, ice-sheet-wide studies of calving fronts have been either spatially or temporally limited. In this study multiple calving-front positions were derived for 199 Greenland marine-terminating outlet glaciers with width greater than 1 km using Landsat imagery for the 11-year period 2000–2010 in order to identify regional seasonal and inter-annual variations. During this period, outlet glaciers were characterized by sustained and substantial retreat summing to more than 267 km, with only 11 glaciers showing overall advance. In general, the pattern of mass loss detected by GRACE (Gravity Recovery and Climate Experiment) and other measurements is reflected in the calving record of Greenland glaciers. Our results suggest several regions in the south and east of the ice sheet likely share controls on their dynamic changes, but no simple single control is apparent

    Parkinson's disease in a dish - Using stem cells as a molecular tool.

    No full text
    Parkinson's disease (PD) is the second most common neurodegenerative disease, with a strong genetic component to both the familial and sporadic forms. The cardinal motor symptoms of the disease result from the loss of dopamine (DA) neurons in the midbrain. There is currently no cure for PD and improved methods for modelling the disease are required in order to develop more effective therapeutic interventions. Patient-derived induced pluripotent stem cells (iPSCs) carry the genetic background of the donor, enabling accurate modelling of genetic diseases in vitro. Various human iPSCs from patients suffering different genetic forms of PD have been differentiated into DA neurons and demonstrated signs of the pathophysiology of PD in vitro. The examination of key cellular pathways such as calcium regulation and autophagy indicate that disease-associated genetic variants may have important implications for cellular function. This review examines and critiques how DA neurons from patient iPSCs have been used to model PD in vitro, and what iPSCs might hold for the future of PD research. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'

    Galanin promotes neuronal differentiation from neural progenitor cells in vitro and contributes to the generation of new olfactory neurons in the adult mouse brain.

    No full text
    Galanin is a pleiotropic neuropeptide widely expressed in the nervous system. It plays a role in many diverse physiological functions - including nociception, cognition and metabolism regulation - and acts as neurotrophic/neuroprotective factor for several neuronal populations. In this article we sought to determine the role of galanin on neural stem cell function and its contribution to the plasticity of the nervous system. Here we show that galanin and its receptors are expressed in neural progenitor cells (NPCs) isolated from the developing striatum. Stimulation with galanin results in upregulation of Bcl-Xl, Bcl-2, Mash-1 and Olig-2 that are part of well known pro-survival/pro-neuronal signalling pathways. Accordingly, treatment with galanin increases the number of neurons upon differentiation from these progenitors. We then show that these effects are recapitulated in NPCs isolated from the adult subventricular zone (SVZ), where galanin increases the total number of neurons and the number of newly-generated neurons upon differentiation in vitro. The significance of these findings is highlighted in the adult brain where loss of galanin leads to a marked decrease in the rate of adult SVZ neurogenesis and a reduction in the number of newly generated cells in the olfactory bulb. Interestingly, Gal-KO mice display normal performances in simple tasks of olfactory detection and discrimination, which points to the existence of a certain degree of redundancy in SVZ neurogenesis. Our findings establish the role of galanin as a modulator of neural stem cell function and support the importance of galanin for brain plasticity and repair

    Enhanced Efficacy of the CDNF/MANF Family by Combined Intranigral Overexpression in the 6-OHDA Rat Model of Parkinson's Disease.

    No full text
    Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.Molecular Therapy (2014); doi:10.1038/mt.2014.206

    Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo

    No full text
    Abnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss. MicroRNA-7 (miR-7) regulates α-synuclein expression by binding to the 3' UTR of the Synuclein Alpha Non A4 Component of Amyloid Precursor (SNCA) gene and inhibiting its translation. We show that miR-7 is decreased in the substantia nigra of patients with PD and, therefore, may play an essential role in the regulation of α-synuclein expression. Furthermore, we have found that lentiviral-mediated expression of miR-7 complementary binding sites to stably induce a loss of miR-7 function results in an increase in α-synuclein expression in vitro and in vivo. We have also shown that depletion of miR-7 using a miR-decoy produces a loss of nigral dopaminergic neurons accompanied by a reduction of striatal dopamine content. These data suggest that miR-7 has an important role in the regulation of α-synuclein and dopamine physiology and may provide a new paradigm to study the pathology of PD

    Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells

    No full text
    Neuronal differentiation from expanded human ventral mesencephalic neural precursor cells (NPCs) is very limited. Astrocytes are known to secrete neurotrophic factors, and so in order to enhance neuronal survival from NPCs, we tested the effect of regional astrocyte-conditioned medium (ACM) from the rat cortex, hippocampus and midbrain on this process. Human NPC's were expanded in FGF-2 before differentiation for 1 or 4 weeks in ACM. The results show that ACM from the hippocampus and midbrain increase the number of neurons from expanded human NPCs, an effect that was not observed with cortical ACM. In addition, both hippocampal and midbrain ACM increased the number and length of phosphorylated neurofilaments. MALDI-TOF analysis used to determine differences in media revealed that although all three regional ACMs had cystatin C, α-2 macroglobulin, extracellular matrix glycoprotein and vimentin, only hippocampal and midbrain ACM also contained clusterin, which when immunodepleted from midbrain ACM eliminated the observed effects on neuronal differentiation. Furthermore, clusterin is a highly glycosylated protein that has no effect on cell proliferation but decreases apoptotic nuclei and causes a sustained increase in phosphorylated extracellular signal-regulated kinase, implicating its role in cell survival and differentiation. These findings further reveal differential effects of regional astrocytes on NPC behavior and identify clusterin as an important mediator of NPC-derived neuronal survival and differentiation
    corecore