297 research outputs found

    Impact of climate change on freshwater snail species' ranges

    Get PDF
    Global warming is expected to be associated with diverse changes in freshwater habitats in north-western Europe. Increasing evaporation, lower oxygen concentration due to increased water temperature and changes in precipitation pattern are likely to affect the survival ratio and reproduction rate of freshwater gastropods (Pulmonata, Basommatophora). This work is a comprehensive analyse of the climatic factors influencing their ranges both in the past and in the near future. A macroecological approach showed that for a great proportion of genera the ranges were projected to contract by 2080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, but also reduced drastically the available habitat in the southern part of the studied region. In order to better understand the ranges dynamics in the past and the post glacial colonisation patterns, an approach combining ecological niche modelling and phylogeography was used for two model species, Radix balthica and Ancylus fluviatilis. Phylogeographic model selection on a COI mtDNA dataset confirmed that R. balthica most likely spread from two central European disjunct refuges after the last glacial maximum. The phylogeographic analysis of A. fluviatilis, using 16S and COI mtDNA datasets, also inferred central European refugia. The absence of niche conservatism (adaptive potential) inferred for A. fluviatilis puts a cautionary note on the use of climate envelope models to predict the future ranges of this species. However, the other model species exhibited strong niche conservatism, which allow putting confidence into such predictions. A profound faunal shift will take place in Central Europe within the next century, either permitting the establishment of species currently living south of the studied region or the proliferation of organisms relying on the same food resources. This study points out the need for further investigations on the dispersal modes of freshwaters snails, since the future range size of the species depend on their ability to establish in newly available habitats. Likewise, the mixed mating system of these organisms gives them the possibility to fund a new population from a single individual. It will probably affect the colonisation success and needs further investigation

    Lax pair for the Adler (lattice Krichever-Novikov) System

    Full text link
    In the paper [V. Adler, IMRN {\bf 1} (1998) 1--4] a lattice version of the Krichever-Novikov equation was constructed. We present in this note its Lax pair and discuss its elliptic form.Comment: 17 pages, 3 figure

    Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata)

    Get PDF
    BACKGROUND: Reliable taxonomic identification at the species level is the basis for many biological disciplines. In order to distinguish species, it is necessary that taxonomic characters allow for the separation of individuals into recognisable, homogeneous groups that differ from other such groups in a consistent way. We compared here the suitability and efficacy of traditionally used shell morphology and DNA-based methods to distinguish among species of the freshwater snail genus Radix (Basommatophora, Pulmonata). RESULTS: Morphometric analysis showed that shell shape was unsuitable to define homogeneous, recognisable entities, because the variation was continuous. On the other hand, the Molecularly defined Operational Taxonomic Units (MOTU), inferred from mitochondrial COI sequence variation, proved to be congruent with biological species, inferred from geographic distribution patterns, congruence with nuclear markers and crossing experiments. Moreover, it could be shown that the phenotypically plastic shell variation is mostly determined by the environmental conditions experienced. CONCLUSION: Contrary to DNA-taxonomy, shell morphology was not suitable for delimiting and recognising species in Radix. As the situation encountered here seems to be widespread in invertebrates, we propose DNA-taxonomy as a reliable, comparable, and objective means for species identification in biological research
    • …
    corecore