31 research outputs found

    Lipid storage and autophagy in melanoma cancer cells

    Get PDF
    Cancer stem cells (CSC) represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1) and Peroxisome Proliferator-Activated Receptor-Îł (PPAR-Îł). An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3) lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK) and Phospho-mammalian Target of Rapamycin (P-mTOR) were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology

    A LC-QTOF Method for the Determination of PEGDE Residues in Dermal Fillers

    Get PDF
    Hyaluronic acid is one of the most important ingredients in dermal fillers, where it is often cross-linked to gain more favorable rheological properties and to improve the implant duration. Poly(ethylene glycol) diglycidyl ether (PEGDE) has been recently introduced as a crosslinker because of its very similar chemical reactivity with the most-used crosslinker BDDE, while giving special rheological properties. Monitoring the amount of the crosslinker residues in the final device is always necessary, but in the case of PEGDE, no methods are available in literature. Here, we present an HPLC-QTOF method, validated according to the guidelines of the International Council on Harmonization, which enables the efficient routine examination of the PEGDE content in HA hydrogels

    Analysis of Hand Intra-Finger Couplings During Flexion Movements in the Free Space

    No full text
    The anatomy of the human hand is characterized by intrinsic coupling mechanisms at the level of the tendons and bone structure. The intra-finger constraints, in particular, represent coupled movements of the joints of the same finger. Previous studies verified the existence of intra-finger couplings for circular and prismatic grasps, and hypothesized the existence of such couplings for free flexion-extension movements of the fingers without, however, quantifying them. The aim of this work was: i) to calculate subject-specific intra-finger couplings during flexion movements in the free space by exploiting a marker-based motion capture system and a validated kinematic protocol to guarantee high accuracy of the reconstructed hand kinematics, ii) to understand the effect of the hand size and of the finger on the coupling relations, and iii) to establish generalized coupling coefficients that could be used to simplify the kinematic hand model. To this purpose, ten healthy subjects performed flexion-extension movements of the fingers. Subject-specific couplings were extracted through linear regression analysis on pairs of adjacent joint angle trajectories: proximal couplings represented the relation between the Proximal-Inter-Phalangeal and MetaCarpo-Phalangeal joints for the long fingers and between the MetaCarpo-Phalangeal and Carpo-MetaCarpal joints for the thumb, whereas distal couplings represented the relation between the Distal-Inter-Phalangeal and Proximal-Inter-Phalangeal joints for the long fingers and between Inter-Phalangeal and MetaCarpo-Phalangeal joints for the thumb. The subject-specific coupling coefficients were independent from the hand size, and a difference between the distal couplings of the thumb and of the index, middle and ring fingers was highlighted. Regression analysis on the average flexion trajectories calculated on the ten participants showed a linear trend for both proximal and distal couplings ( R^{2}>0.97 ) and small Root Mean Square Errors (1.63 deg on average). Coupling coefficients ranged 1.4 – 1.9 and 0.7 – 0.9 for the proximal and distal couplings respectively. Given its distinctive kinematic structure, the thumb exhibited a particular behaviour, as its proximal and distal couplings were the same. The extracted couplings represent normative coupling values on a population of ten individuals. The obtained results suggest the possibility of simplifying the kinematic hand model by imposing linear relations between the joints of each finger, thus reducing the number of independent degrees of freedom to one for each finger. This could be used to define input design parameters for the development of biomimetic hand prostheses and exoskeletons

    Eosin treatment for psoriasis reduces skin leukocyte infiltration and secretion of inflammatory chemokines and angiogenic factors.

    No full text
    BACKGROUND: Eosin has been traditionally employed as a topical treatment for psoriasis, but the biological mechanism of its therapeutic action has not been fully elucidated. OBJECTIVES: To analyse eosin effects on psoriatic skin in vivo and keratinocytes and endothelial cells in vitro. MATERIALS & METHODS: Skin biopsies were taken from psoriatic plaques before and after a three-day eosin treatment and processed for histological analysis. Cultured human psoriatic keratinocytes and dermal endothelial cells were treated with eosin, and release of inflammatory chemokines was analysed by multiplexed bead-based immunoassay and ELISA. RESULTS: In patients, the three-day eosin treatment significantly reduced the number of infiltrating T lymphocytes, neutrophilic granulocytes, and dermal dendritic cells. A reduction in VEGF-A expression was also observed. In vitro, eosin treatment significantly decreased the release of CCL2, CCL5, and VEGF-A by keratinocytes and angiopoietin-2 by endothelial cells. CONCLUSIONS: Eosin treatment impacts on psoriatic inflammatory infiltrates and dampens the release of proinflammatory chemokines and angiogenic factors

    Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells

    No full text
    Background: Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. Methods: Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. Results: The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD’s catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. Conclusions: Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells

    Development and Validation of a System for the Assessment and Recovery of Grip Force Control

    No full text
    The ability to finely control hand grip forces can be compromised by neuromuscular or musculoskeletal disorders. Therefore, it is recommended to include the training and assessment of grip force control in rehabilitation therapy. The benefits of robot-mediated therapy have been widely reported in the literature, and its combination with virtual reality and biofeedback can improve rehabilitation outcomes. However, the existing systems for hand rehabilitation do not allow both monitoring/training forces exerted by single fingers and providing biofeedback. This paper describes the development of a system for the assessment and recovery of grip force control. An exoskeleton for hand rehabilitation was instrumented to sense grip forces at the fingertips, and two operation modalities are proposed: (i) an active-assisted training to assist the user in reaching target force values and (ii) virtual reality games, in the form of tracking tasks, to train and assess the user’s grip force control. For the active-assisted modality, the control of the exoskeleton motors allowed generating additional grip force at the fingertips, confirming the feasibility of this modality. The developed virtual reality games were positively accepted by the volunteers and allowed evaluating the performance of healthy and pathological users

    Targeting Melanoma-Initiating Cells by Caffeine: In Silico and In Vitro Approaches

    No full text
    The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to the choice of experimental models where proliferation, differentiation and immune responses are differently affected. The aim of the present study was to investigate the effects of one of the most interesting bioactive compounds in coffee, i.e., caffeine, using a cellular model of melanoma at a defined differentiation level. A preliminary in silico analysis carried out on public gene-expression databases identified genes potentially involved in caffeine’s effects and suggested some specific molecular targets, including tyrosinase. Proliferation was investigated in vitro on human melanoma initiating cells (MICs) and cytokine expression was measured in conditioned media. Tyrosinase was revealed as a key player in caffeine’s mechanisms of action, suggesting a crucial role in immunomodulation through the reduction in IL-1β, IP-10, MIP-1α, MIP-1β and RANTES secretion onto MICs conditioned media. The potent antiproliferative effects of caffeine on MICs are likely to occur by promoting melanin production and reducing inflammatory signals’ secretion. These data suggest tyrosinase as a key player mediating the effects of caffeine on melanoma

    Treatment of the Paretic Hand with a Robotic Glove Combined with Physiotherapy in a Patient Suffering from Traumatic Tetraparesis: A Case Report

    No full text
    Background: cervical spinal cord injury leads to loss of upper limb functionality, which causes a decrease in autonomy to perform activities of daily living. The use of robotic technologies in rehabilitation could contribute to improving upper limb functionality and treatment quality. This case report aims to describe the potential of robotic hand treatment with Gloreha Sinfonia, in combination with conventional rehabilitation, in a tetraparetic patient. Material: fifteen rehabilitative sessions were performed. Evaluations were conducted pre-treatment (T0), post-treatment (T1), and at two-months follow-up (T2) based on: the upper-limb range of motion and force assessment, the FMA-UE, the 9-Hole Peg Test (9HPT), and the DASH questionnaire. A virtual reality game-based rating system was used to evaluate the force control and modulation ability. Results: the patient reported greater ability to use hands with less compensation at T1 and T2 assessments. Improvements in clinical scales were reported in both hands at T1, however, at T2 only did the dominant hand show further improvement. Improved grip strength control and modulation ability were reported for T1. However a worsening was found in both hands at T2, significant only for the non-dominant hand. The maximum force exerted increased from T0 to T2 in both hands. Conclusion: hand treatment combining physical therapy and Gloreha Sinfonia seems to have benefits in functionality and dexterity in tetraparetic patient in the short term. Further studies are needed to confirm these findings, to verify long-term results, and to identify the most appropriate modalities of robotic rehabilitation
    corecore