173 research outputs found

    Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription

    Get PDF
    Virus-transformed pre-B cells undergo ordered immunoglobulin (Ig) gene rearrangements during culture. We devised a series of highly sensitive polymerase chain reaction assays for Ig gene rearrangement and unrearranged Ig gene segment transcription to study both the possible relationship between these processes in cultured pre-B cells and the role played by heavy (H) chain (mu) protein in regulating gene rearrangement. Our analysis of pre-B cell cultures representing various stages of maturity revealed that transcription of each germline Ig locus precedes or is coincident with its rearrangement. Cell lines containing one functional rearranged H chain allele, however, continue to transcribe and to rearrange the allelic, unrearranged H chain locus. These cell lines appear to initiate but not terminate rearrangement events and therefore provide information about the requirements for activating rearrangement but not about allelic exclusion mechanisms

    The promoter of the human interleukin-2 gene contains two octamer-binding sites and is partially activated by the expression of Oct-2

    Get PDF
    The gene encoding interleukin-2 (IL-2) contains a sequence 52 to 326 nucleotides upstream of its transcriptional initiation site that promotes transcription in T cells that have been activated by costimulation with tetradecanoyl phorbol myristyl acetate (TPA) and phytohemagglutinin (PHA). We found that the ubiquitous transcription factor, Oct-1, bound to two previously identified motifs within the human IL-2 enhancer, centered at nucleotides -74 and -251. Each site in the IL-2 enhancer that bound Oct-1 in vitro was also required to achieve a maximal transcriptional response to TPA plus PHA in vivo. Point mutations within either the proximal or distal octamer sequences reduced the response of the enhancer to activation by 54 and 34%, respectively. Because the murine T-cell line EL4 constitutively expresses Oct-2 and requires only TPA to induce transcription of the IL-2 gene, the effect of Oct-2 expression on activation of the IL-2 promoter in Jurkat T cells was determined. Expression of Oct-2 potentiated transcription 13-fold in response to TPA plus PHA and permitted the enhancer to respond to the single stimulus of TPA. Therefore, both the signal requirements and the magnitude of the transcription response of the IL-2 promoter can be modulated by Oct-2

    Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes

    Get PDF
    Normalization is critical for removing systematic variation from microarray data. For two-color microarray platforms, intensity-dependent lowess normalization is commonly used to correct relative gene expression values for biases. Here we outline a normalization method for use when the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique arrays are constructed that contain a subset of genes selected to test particular biological functions

    Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice

    Get PDF
    We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1⁻) mice. Complementation with a membrane µ heavy chain (µHC) gene allows progression of developmentally arrested Rag-1⁻ pro-B-cells to the small pre-B cell stage, whereas the introduction of independently integrated µHC and κ light chain (κLC) transgenes promotes the appearance of peripheral lymphocytes which, however, remain unresponsive to external stimuli. Complete reconstitution of the B-cell lineage and the emergence of functionally nature Rag-1⁻ peripheral B cells is achieved by the introduction of cointegrated heavy and light chain transgenes encoding an anti-H-2^k antibody. This experimental system demonstrates the competence of the µHC and κLC to direct and regulate the sequential stages of B-cell differentiation, defines the time at which negative selection of self-reactive B cells occurs, and shows that elimination of these cells occurs equally well in the absence of Rag-1 as in its presence. These data also support the hypothesis that Rag-1 directly participates in the V(D)J recombination process

    Bcl-2 Can Rescue T Lymphocyte Development in Interleukin-7 Receptor–Deficient Mice but Not in Mutant rag-1−/− Mice

    Get PDF
    AbstractSignals from cytokine and antigen receptors play crucial roles during lymphocyte development. Mice lacking interleukin-7 receptor are lymphopenic, due to a defect in cell expansion at an early stage of differentiation, and the few mature T cells that develop in IL-7R−/− animals are functionally impaired. Both defects were rescued completely by overexpression of the anti- apoptosis protein Bcl-2. T cell progenitors lacking antigen receptor molecules are also blocked in differentiation and die, presumably because they fail to receive a positive signal via their pre-T cell receptor. Surprisingly, Bcl-2 did not promote survival or differentiation of T cells in rag-1−/− mice. These results provide evidence that blocking apoptosis is the essential function of IL-7R during differentiation and activation of T lymphocytes and that pre-TCR signaling blocks a pathway to apoptosis that is insensitive to Bcl-2

    Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription

    Get PDF
    Virus-transformed pre-B cells undergo ordered immunoglobulin (Ig) gene rearrangements during culture. We devised a series of highly sensitive polymerase chain reaction assays for Ig gene rearrangement and unrearranged Ig gene segment transcription to study both the possible relationship between these processes in cultured pre-B cells and the role played by heavy (H) chain (mu) protein in regulating gene rearrangement. Our analysis of pre-B cell cultures representing various stages of maturity revealed that transcription of each germline Ig locus precedes or is coincident with its rearrangement. Cell lines containing one functional rearranged H chain allele, however, continue to transcribe and to rearrange the allelic, unrearranged H chain locus. These cell lines appear to initiate but not terminate rearrangement events and therefore provide information about the requirements for activating rearrangement but not about allelic exclusion mechanisms

    Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival

    Get PDF
    Oct-2, a POU homeo domain transcription factor, is believed to stimulate B-cell-restricted expression of immunoglobulin genes through binding sites in immunoglobulin gene promoters and enhancers. To determine whether Oct-2 is required for B-cell development or function, or has other developmental roles, the gene was disrupted by homologous recombination. Oct-2^(-/-) mice develop normally but die within hours of birth for undetermined reasons. Mutants contain normal numbers of B-cell precursors but are somewhat deficient in IgM+ B cells. These B cells have a marked defect in their capacity to secrete immunoglobulin upon mitogenic stimulation in vitro. Thus, Oct-2 is not required for the generation of immunoglobulin-bearing B cells but is crucial for their maturation to immunoglobulin-secreting cells and for another undetermined organismal function

    Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells

    Get PDF
    Mice lacking a functional gene for the Oct2 transcriptional activator display several developmental and functional deficiencies in the B lymphocyte lineage. These include defective B cell receptor (BCR) and Toll-like receptor 4 signaling, an absence of B-1 and marginal zone populations, and globally reduced levels of serum immunoglobulin (Ig) in naive and immunized animals. Oct2 was originally identified through its ability to bind to regulatory regions in the Ig loci, but genetic evidence has not supported an essential role for Oct2 in the expression of Ig genes. We describe a new Oct2-mediated role in B cells. Oct2 augments the ability of activated B cells to differentiate to antibody-secreting plasma cells (ASCs) under T cell–dependent conditions through direct regulation of the gene encoding the α chain of the interleukin (IL) 5 receptor. Ectopic expression of IL-5Rα in oct2-deficient B cells largely restores their ability to differentiate to functional ASCs in vitro but does not correct other phenotypic defects in the mutants, such as the maturation and specialization of peripheral B cells, which must therefore rely on distinct Oct2 target genes. IL-5 augments ASC differentiation in vitro, and we show that IL-5 directly activates the plasma cell differentiation program by enhancing blimp1 expression
    corecore