445 research outputs found
Visualization of scientific arts and some examples of applications
In this paper, implementation and visualization of scientific arts are described using some examples of application in subject research areas, such as sculpture, archeology, fine arts and information aesthetics, which have been discussed through the Scientific Art Session at FLUCOME9, Tallahassee, Florida, 2007-9. In the application to sculpture, stereo visualization techniques, such as anaglyph stereo visualization and integral imaging technique, are introduced to realize the three-dimensional geometry of sculpture to enhance visual impact on the art. The second application is the flow visualization technique for archeology, where the vortices behind the river stones are studied to understand the origin of patterns on Jomon pottery. Interestingly, such vortex patterns also appear in the paintings of fine arts. The third example is the visualization of information aesthetics, where the Web information, such as public media and stock market, are visualized through scientific techniques. These example of visualization of scientific arts provide the present state of the art in interdisciplinary visualization
A GIS based Screening Tool for Locating and Ranking of Suitable Stormwater Harvesting Sites in Urban Areas
There is the need to re-configure current urban water systems to achieve the objective of sustainable water sensitive cities. Stormwater represents a valuable alternative urban water source to reduce pressure on fresh water resources, and to mitigate the environmental impact of urban stormwater runoff. The selection of suitable urban stormwater harvesting sites is generally based on the judgement of water planners, who are faced with the challenge of considering multiple technical and socio-economic factors that influence the site suitability. To address this challenge, the present study developed a robust GIS based screening methodology for identifying potentially suitable stormwater harvesting sites in urban areas as a first pass for then more detailed investigation. The study initially evaluated suitability based on the match between harvestable runoff and demand through a concept of accumulated catchments. Drainage outlets of these accumulated catchments were considered as potential stormwater harvesting sites. These sites were screened and ranked under screening parameters namely demand, ratio of runoff to demand and weighted demand distance. The methodology described in this paper was successfully applied to a case study in Melbourne, Australia in collaboration with the local water utility. The methodology was found to be effective in supporting the selection of priority sites for stormwater harvesting schemes, as it provided the basis to identify, short-list and rank sites for further detailed investigation. The rapid identification of suitable sites for stormwater harvesting can assist planners in prioritising schemes in areas that will have the most impact on reducing potable water demand. © 2013 Elsevier Ltd
Analysis of social attitude to the new end use of recycled water for household laundry in Australia by the regression models
Recycled water for household laundry can be regarded as a promising strategy to alleviate the current demand on scarce water supplies. Public acceptability becomes fairly important to ensure the successful establishment and development of this new end use. To address the issue, this study conducted social surveys in two locations of Australia, Port Macquarie and Melbourne, where respondents were asked 17 questions. The regression models provide conclusions about which characteristics are more likely to lead to the acceptance of recycled water from society. Three attitudinal variables (RWAlterDW, Attitude and Cost) and three psychological variables (Odour, Reading and SmallUnit) were found to be the key driving forces behind domestic water reuse behaviour. These findings could drive the future research direction to achieve better public perception of this new end use of recycled water. © 2013 Elsevier Ltd
CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow
L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a
bipolar outflow, is an excellent source for studying shock chemistry, including
grain-surface chemistry prior to shocks, and post-shock, gas-phase processing.
The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000
years ago, respectively. Prior to these shock events, temperatures were too low
for most complex organic molecules to undergo thermal desorption. Thus, the
shocks should have liberated these molecules from the ice grain-surfaces en
masse, evidenced by prior observations of SiO and multiple grain mantle species
commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO,
all peak at different positions relative to species that are preferably formed
in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN.
Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and
HCO+ in the southern portion of the outflow containing B1 and B2, as observed
with CARMA. The HNCO maps are the first interferometric observations of this
species in L1157. The maps show distinct differences in the chemistry within
the various shocked regions in L1157B. This is further supported through
constraints of the molecular abundances using the non-LTE code RADEX (Van der
Tak et al. 2007). We find the east/west chemical differentiation in C2 may be
explained by the contrast of the shock's interaction with either cold, pristine
material or warm, previously-shocked gas, as seen in enhanced HCN abundances.
In addition, the enhancement of the HNCO abundance toward the the older shock,
B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa
Generic Intent Representation in Web Search
This paper presents GEneric iNtent Encoder (GEN Encoder) which learns a
distributed representation space for user intent in search. Leveraging large
scale user clicks from Bing search logs as weak supervision of user intent, GEN
Encoder learns to map queries with shared clicks into similar embeddings
end-to-end and then finetunes on multiple paraphrase tasks. Experimental
results on an intrinsic evaluation task - query intent similarity modeling -
demonstrate GEN Encoder's robust and significant advantages over previous
representation methods. Ablation studies reveal the crucial role of learning
from implicit user feedback in representing user intent and the contributions
of multi-task learning in representation generality. We also demonstrate that
GEN Encoder alleviates the sparsity of tail search traffic and cuts down half
of the unseen queries by using an efficient approximate nearest neighbor search
to effectively identify previous queries with the same search intent. Finally,
we demonstrate distances between GEN encodings reflect certain information
seeking behaviors in search sessions
Effect of heavy metals in recycled water used for household laundry on quality of cloth and washing machine
Recycled water for washing clothes saves significant amount of potable water and hence has a great potential for sustainable urban-water management. To date, there has been no official acceptance and very rare practice of use of recycled water for household laundry. This study investigates the effects of critical heavy metals (Pb, Mn, Fe, Cu and Zn) on cloth quality and corrosive/scaling of washing machine to evaluate the feasibility of using recycled water for household laundry. The experimental data can be used for future recycled-water-quality guidelines. Five representative cloth materials namely polyester, satin, polycotton, denim and organic cotton were selected for washing in tap water and synthetic recycled water which contained different concentrations of heavy metals. Cloth durability, surface morphology and textile colour of washed cloth samples were measured to investigate the effects of heavy metals on quality of fabric. Langelier Saturation Index (LSI) was used as the indicator for predicting corrosive/scaling effects on washing machine. The results indicated that quality of fabrics after 50 wash cycles was found to have no change by recycled water when concentration of Pb and Mn < 0.5 mg/L, Fe < 1 mg/L, Cu < 5 mg/L and Zn < 30 mg/L. Lower than the above values, the LSI indicated that recycled water would not lead to any negative impact on washing machine
A comprehensive framework for the assessment of new end uses in recycled water schemes
Nowadays, recycled water has provided sufficient flexibility to satisfy short-term freshwater needs and increase the reliability of long-term water supplies in many water scarce areas, which becomes an essential component of integrated water resources management. However, the current applications of recycled water are still quite limited that are mainly associated with non-potable purposes such as irrigation, industrial uses, toilet flushing and car washing. There is a large potential to exploit and develop new end uses of recycled water in both urban and rural areas. This can greatly contribute to freshwater savings, wastewater reduction and water sustainability. Consequently, the paper identified the potentials for the development of three recycled water new end uses, household laundry, livestock feeding and servicing, and swimming pool, in future water use market. To validate the strengths of these new applications, a conceptual decision analytic framework was proposed. This can be able to facilitate the optional management strategy selection process and thereafter provide guidance on the future end use studies within a larger context of the community, processes, and models in decision-making. Moreover, as complex evaluation criteria were selected and taken into account to narrow down the multiple management alternatives, the methodology can successfully add transparency, objectivity and comprehensiveness to the assessment. Meanwhile, the proposed approach could also allow flexibility to adapt to particular circumstances of each case under study. © 2013 Elsevier B.V
A new optional recycled water pre-treatment system prior to use in the household laundry
With a constantly growing population, water scarcity becomes the limiting factor for further social and economic growth. To achieve a partial reduction in current freshwater demands and lessen the environmental loadings, an increasing trend in the water market tends to adopt recycled water for household laundries as a new recycled water application. The installation of a small pre-treatment unit for water purification can not only further improve the recycled water quality, but also be viable to enhance the public confidence and acceptance level on recycled water consumption. Specifically, this paper describes column experiments conducted using a 550. mm length bed of zeolite media as a one-dimensional flow reactor. The results show that the zeolite filter system could be a simple low-cost pre-treatment option which is able to significantly reduce the total hardness level of recycled water via effective ion exchange. Additionally, depending on the quality of recycled water required by end users, a new by-pass controller using a three-level operation switching mechanism is introduced. This approach provides householders sufficient flexibility to respond to different levels of desired recycled water quality and increase the reliability of long-term system operation. These findings could be beneficial to the smooth implementation of new end uses and expansion of the potential recycled water market. The information could also offer sound suggestions for future research on sustainable water management and governance. © 2014 Elsevier B.V
- …