5 research outputs found

    Cathodes for electrochemical carbon dioxide reduction to multi-carbon products: part II rapid improvement in cathode performance

    No full text
    This is Part II of a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multicarbon (C2+) products. Part I (1) introduced the role of CO2 reduction in decarbonising the chemical industry and described the catalysts and modelling approaches. Part II describes in situ characterisation to improve the understanding and development of catalysts, the catalyst layer and the gas diffusion layer.</p

    Cathodes for electrochemical carbon dioxide reduction to multi-carbon products: part I : a focused review of recent highlights

    No full text
    This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C2+) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C2+ products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance

    Fine-tuned combination of cell and electrode designs unlocks month-long stable low temperature Cu-based CO2 electrolysis

    No full text
    The urgency of achieving green chemical production through Cu-based CO2 electroreduction necessitates a rapid transition towards technical maturity and commercialization in the pursuit of addressing the global imperative of decarbonization. Surprisingly, limited emphasis has been placed on exploration of readily scalable cell and electrode designs, which are pivotal in ushering in the era of stable and selective CO2 electrolyzers, showcasing the innovative potential within this area. Herein, we report a breakthrough in achieving month-long stability in the production of C2H4, representing an unprecedented milestone in low-temperature CO2 to C2+ electrolysis. Initial investigations involved the evaluation of five distinct cell architectures for Cu-based CO2 electrolyzers, guided by considerations of cell potentials, scalability with current technology, and CO2 crossover. An innovative multilayer Gas Diffusion Electrode (GDE), featuring an anion exchange ionomer and metal oxide layer, is introduced for CEM-based zero-gap cells, enabling C2H4 formation despite acidic surroundings. However, selectivity towards C2H4 proved suboptimal for extended stability testing. Conversely, the tailored multilayer GDE for one-gap cell architecture achieves a commendable 54 % faradaic efficiency (FE) towards C2+ products at 300 mA/cm2. Remarkably, chronopotentiometric tests demonstrate 720 h of stability (FEC2H4 > 20 %) at 100 mA/cm2. At higher current densities (300 mA/cm2), stability is reduced to 75 h, with detailed analyses revealing distinct degradation mechanisms. At 100 mA/cm2, salt formation predominates, while at 300 mA/cm2, catalyst layer restructuring degrades catalytic activity towards C2H4. Our research underscores the potential for stable, high C2+ selectivity through innovative electrode design and scalable cell architectures, advancing sustainable CO2 utilization

    Synthesis, Alignment, and Magnetic Properties of Monodisperse Nickel Nanocubes

    No full text
    This Communication describes the synthesis of highly monodispersed 12 nm nickel nanocubes. The cubic shape was achieved by using trioctylphosphine and hexadecylamine surfactants under a reducing hydrogen atmosphere to favor thermodynamic growth and the stabilization of {100} facets. Varying the metal precursor to trioctylphosphine ratio was found to alter the nanoparticle size and shape from 5 nm spherical nanoparticles to 12 nm nanocubes. High-resolution transmission electron microscopy showed that the nanocubes are protected from further oxidation by a 1 nm NiO shell. Synchrotron-based X-ray diffraction techniques showed the nickel nanocubes order into [100] aligned arrays. Magnetic studies showed the nickel nanocubes have over 4 times enhancement in magnetic saturation compared to spherical superparamagnetic nickel nanoparticles
    corecore