65 research outputs found

    Conceptual Framework to Guide Early Diagnosis Programs for Symptomatic Cancer as Part of Global Cancer Control

    Get PDF
    ACKNOWLEDGMENT This research arises from the CanTest Collaborative, which is funded by Cancer Research UK (C8640/A23385), of which MMK and NC are Postdoctoral Researchers, GL is Associate Director, GPR is Chair and FMW is Director. GL is supported by Cancer Research UK Clinician Advanced Scientist Fellowship (grant number: C18081/A18180). The funder has had no role in the study, writing of the report, or decision to submit the paper for publication.Peer reviewedPublisher PD

    Conceptual Framework to Guide Early Diagnosis Programs for Symptomatic Cancer as Part of Global Cancer Control.

    Get PDF
    Diagnosing cancer earlier can enable timely treatment and optimize outcomes. Worldwide, national cancer control plans increasingly encompass early diagnosis programs for symptomatic patients, commonly comprising awareness campaigns to encourage prompt help-seeking for possible cancer symptoms and health system policies to support prompt diagnostic assessment and access to treatment. By their nature, early diagnosis programs involve complex public health interventions aiming to address unmet health needs by acting on patient, clinical, and system factors. However, there is uncertainty regarding how to optimize the design and evaluation of such interventions. We propose that decisions about early diagnosis programs should consider four interrelated components: first, the conduct of a needs assessment (based on cancer-site-specific statistics) to identify the cancers that may benefit most from early diagnosis in the target population; second, the consideration of symptom epidemiology to inform prioritization within an intervention; third, the identification of factors influencing prompt help-seeking at individual and system level to support the design and evaluation of interventions; and finally, the evaluation of factors influencing the health systems' capacity to promptly assess patients. This conceptual framework can be used by public health researchers and policy makers to identify the greatest evidence gaps and guide the design and evaluation of local early diagnosis programs as part of broader cancer control strategies

    Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to influence plasma HDL-C, apolipoprotein A-I (apo A-I) levels and severity of coronary atherosclerosis.</p> <p>Methods</p> <p>We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes (plasma HDL-C and apo A-I levels) with the genotypes. We included sex, age, body mass index (BMI), diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of the false positive discovery rate (FDR).</p> <p>Results</p> <p>Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking (lower in smokers), DM (lower in those with DM) and SNPs in <it>APOA5, APOC2</it>, <it>CETP, LPL </it>and <it>LIPC </it>(each q ≤0.01). Likewise, plasma apo A-I levels, available in the LCAS subset, were associated with SNPs in <it>CETP</it>, <it>APOA5</it>, and <it>APOC2 </it>as well as with BMI, sex and age (all q values ≤0.03). The <it>APOA5 </it>variant S19W was also associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p = 0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD.</p> <p>Conclusion</p> <p>Putatively functional variants of <it>APOA2</it>, <it>APOA5, APOC2</it>, <it>CETP, LPL</it>, <it>LIPC </it>and <it>SOAT2 </it>are independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in <it>APOA5 </it>is also an independent determinant of plasma apo A-I level, severity of coronary atherosclerosis and its progression.</p

    Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk

    Get PDF
    Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5–7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4×10−5, allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8×10−10) and intron 8 polymorphism rs9930761-T>C (5.6×10−8) (in high linkage disequilibrium with allele frequencies 6–7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9

    Association of CETP TaqI and APOE polymorphisms with type II diabetes mellitus in North Indians: a case control study

    Get PDF
    BACKGROUND: Genetic variants of proteins involved in lipid metabolism may play an important role in determining the susceptibility for complications associated with type II diabetes mellitus (T2DM). Goal of the present study was to determine the association of cholesteryl ester transfer protein TaqI B, D442G, and APOE Hha I polymorphisms with T2DM and its complications. METHODS: Study subjects were 136 patients and 264 healthy controls. All polymorphisms were detected using PCR-RFLP and statistical analysis done with χ(2 )test and ANOVA. RESULTS: Although CETP TaqI B polymorphism was not associated with the T2DM, yet B1B2 genotype was significantly (p = 0.028) associated with high risk of hypertension in diabetic patients (OR = 3.068, 95% CI 1.183–7.958). In North Indians D442G variation in CETP gene was found to be absent. Frequency of APOE HhaI polymorphism was also not different between patients and controls. In diabetic patients having neuropathy and retinopathy significantly different levels of total-cholesterol [(p = 0.001) and (p = 0.029) respectively] and LDL-cholesterol [(p = 0.001) and (p = 0.001) respectively] were observed when compared to patients with T2DM only. However, lipid levels did not show any correlation with the CETP TaqI B and APOE Hha I genetic polymorphisms. CONCLUSION: CETP TaqI B and APOE HhaI polymorphism may not be associated with type II diabetes mellitus in North Indian population, however CETP TaqI B polymorphism may be associated with hypertension along with T2DM
    corecore