11 research outputs found
Recommended from our members
Experiences in Electronic Consultation (eConsult) Service in Gynecology from a Quaternary Academic Medical Center.
To evaluate an academic institution's implementation of a gynecologic electronic consultation (eConsult) service, including the most common queries, turnaround time, need for conversion to in-person visits, and to demonstrate how eConsults can improve access and convenience for patients and providers. This is a descriptive and retrospective electronic chart review. We obtained data from the UCSF eConsult and Smart Referral program manager. The medical system provided institution-wide statistics. Three authors reviewed and categorized gynecologic eConsults for the last fiscal year. The senior author resolved conflicts in coding. The eConsult program manager provided billing information and provider reimbursement. A total of 548 eConsults were submitted to the gynecology service between July 2017 and June 2020 (4.5% of institutional eConsult volume). Ninety-five percent of the eConsults were completed by a senior specialist within our department. Abnormal pap smear management, abnormal uterine bleeding, and contraception questions were the most common queries. Over half (59.3%) of all inquiries were answered on the same day as they were received, with an average of 9% declined. Gynecology was the 10th largest eConsult provider at our institution in 2020. The present investigation describes one large university-based experience with eConsults in gynecology. Results demonstrate that eConsults permit appropriate, efficient triaging of time-sensitive conditions affecting patients especially in the time of the COVID-19 pandemic. eConsult services provide the potential to improve access, interdisciplinary communication, and patient and provider satisfaction
Recommended from our members
Analysis of placental pathology after COVID-19 by timing and severity of infection.
BackgroundCOVID-19 during pregnancy can have serious effects on pregnancy outcomes. The placenta acts as an infection barrier to the fetus and may mediate adverse outcomes. Increased frequency of maternal vascular malperfusion has been detected in the placentas of patients with COVID-19 compared with controls, but little is known about how the timing and severity of infection affect placental pathology.ObjectiveThis study aimed to examine the effects of SARS-CoV-2 infection on placental pathology, specifically whether the timing and severity of COVID-19 affect pathologic findings and associations with perinatal outcomes.Study designThis was a descriptive retrospective cohort study of pregnant people diagnosed with COVID-19 who delivered between April 2020 and September 2021 at 3 university hospitals. Demographic, placental, delivery, and neonatal outcomes were collected through medical record review. The timing of SARS-CoV-2 infection was noted, and the severity of COVID-19 was categorized on the basis of the National Institutes of Health guidelines. The placentas of all patients with positive nasopharyngeal reverse transcription-polymerase chain reaction COVID-19 testing were sent for gross and microscopic histopathologic examinations at the time of delivery. Nonblinded pathologists categorized histopathologic lesions according to the Amsterdam criteria. Univariate linear regression and chi-square analyses were used to assess how the timing and severity of SARS-CoV-2 infection affected placental pathologic findings.ResultsThis study included 131 pregnant patients and 138 placentas, with most patients delivered at the University of California, Los Angeles (n=65), followed by the University of California, San Francisco (n=38) and Zuckerberg San Francisco General Hospital (n=28). Most patients were diagnosed with COVID-19 in the third trimester of pregnancy (69%), and most infections were mild (60%). There was no specific placental pathologic feature based on the timing or severity of COVID-19. There was a higher frequency of placental features associated with response to infection in the placentas from infections before 20 weeks of gestation than that from infections after 20 weeks of gestation (P=.001). There was no difference in maternal vascular malperfusion by the timing of infection; however, features of severe maternal vascular malperfusion were only found in the placentas of patients with SARS-CoV-2 infection in the second and third trimesters of pregnancy, not in the placentas of patients with COVID-19 in the first trimester of pregnancy.ConclusionPlacentas from patients with COVID-19 showed no specific pathologic feature, regardless of the timing or severity of the disease. There was a higher proportion of placentas from patients with COVID-19-positive tests in earlier gestations with evidence of placental infection-associated features. Future studies should focus on understanding how these placental features in SARS-CoV-2 infections go on to affect pregnancy outcomes
Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease.
The factors driving clinical heterogeneity in Alzheimer's disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimer's disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimer's disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimer's disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing-Alzheimer's Association criteria for probable Alzheimer's disease and showed evidence of amyloid deposition on (11)C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of (18)F-labelled fluorodeoxyglucose and (11)C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimer's disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose values from functional network templates. Alzheimer's disease clinical groups showed syndrome-specific (18)F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimer's disease variants showed diffuse patterns of (11)C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimer's disease. The seed region of interest covariance analysis revealed distinct (18)F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimer's disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, (11)C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, (18)F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimer's disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimer's disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimer's disease and logopenic variant primary progressive aphasia), with a trend towards lower (18)F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in (11)C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimer's disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimer's disease
Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease
The factors driving clinical heterogeneity in Alzheimer’s disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimer’s disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimer’s disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimer’s disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing–Alzheimer’s Association criteria for probable Alzheimer’s disease and showed evidence of amyloid deposition on (11)C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of (18)F-labelled fluorodeoxyglucose and (11)C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimer’s disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of (11)C-labelled Pittsburgh compound B and (18)F-labelled fluorodeoxyglucose values from functional network templates. Alzheimer’s disease clinical groups showed syndrome-specific (18)F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimer’s disease variants showed diffuse patterns of (11)C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimer’s disease. The seed region of interest covariance analysis revealed distinct (18)F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimer’s disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, (11)C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, (18)F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimer’s disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimer’s disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimer’s disease and logopenic variant primary progressive aphasia), with a trend towards lower (18)F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in (11)C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimer’s disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimer’s disease
Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography.
IntroductionGroup comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer's disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer's disease neuropathology) in patients presenting with CBS.MethodsIn total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).ResultsA total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen's kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).ConclusionsSplitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD
Recommended from our members
Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography.
IntroductionGroup comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer's disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer's disease neuropathology) in patients presenting with CBS.MethodsIn total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).ResultsA total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen's kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).ConclusionsSplitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD
Recommended from our members
An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations.
IntroductionFrontotemporal lobar degeneration-causing mutations in the progranulin (GRN) gene reduce progranulin protein (PGRN) levels, suggesting that restoring PGRN in mutation carriers may be therapeutic. Nimodipine, a Food and Drug Administration-approved blood-brain barrier-penetrant calcium channel blocker, increased PGRN levels in PGRN-deficient murine models. We sought to assess safety and tolerability of oral nimodipine in human GRN mutation carriers.MethodsWe performed an open-label, 8-week, dose-finding, phase 1 clinical trial in eight GRN mutation carriers to assess the safety and tolerability of nimodipine and assayed fluid and radiologic markers to investigate therapeutic endpoints.ResultsThere were no serious adverse events; however, PGRN concentrations (cerebrospinal fluid and plasma) did not change significantly following treatment (percent changes of -5.2 ± 10.9% in plasma and -10.2 ± 7.8% in cerebrospinal fluid). Measurable atrophy within the left middle frontal gyrus was observed over an 8-week period.DiscussionWhile well tolerated, nimodipine treatment did not alter PGRN concentrations or secondary outcomes
An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN
IntroductionFrontotemporal lobar degeneration-causing mutations in the progranulin (GRN) gene reduce progranulin protein (PGRN) levels, suggesting that restoring PGRN in mutation carriers may be therapeutic. Nimodipine, a Food and Drug Administration-approved blood-brain barrier-penetrant calcium channel blocker, increased PGRN levels in PGRN-deficient murine models. We sought to assess safety and tolerability of oral nimodipine in human GRN mutation carriers.MethodsWe performed an open-label, 8-week, dose-finding, phase 1 clinical trial in eight GRN mutation carriers to assess the safety and tolerability of nimodipine and assayed fluid and radiologic markers to investigate therapeutic endpoints.ResultsThere were no serious adverse events; however, PGRN concentrations (cerebrospinal fluid and plasma) did not change significantly following treatment (percent changes of -5.2 ± 10.9% in plasma and -10.2 ± 7.8% in cerebrospinal fluid). Measurable atrophy within the left middle frontal gyrus was observed over an 8-week period.DiscussionWhile well tolerated, nimodipine treatment did not alter PGRN concentrations or secondary outcomes