188 research outputs found

    Low effective surface recombination in In(Ga)As/GaAs quantum dot diodes

    Get PDF
    Size dependent current-voltage measurements were performed on InGaAs quantum dot active region mesa diodes and the surface recombination velocity was extracted from current density versus perimeter/area plots using a diffusion model. An effective surface recombination value of 5.5 x 10(4) cm/s was obtained that can be reduced by more than an order of magnitude by selective oxidation of Al(0.9)Ga(0.1)As cladding layers. The values are three times smaller than those obtained for a single quantum well. The effect of p-type doping in the active region was investigated and found to increase the effective surface recombination. (C) 2011 American Institute of Physics. [doi:10.1063/1.3611387

    Polarization matching design of InGaN-based semi-polar quantum wells-A case study of (11(2)over-bar2) orientation

    Get PDF
    We present a theoretical study of the polarization engineering in semi-polar III-nitrides heterostructures. As a case study, we investigate the influence of GaN, AlGaN, and AlInN barrier material on the performance of semi-polar (11 (2) over bar2) InGaN-based quantum wells (QWs) for blue (450 nm) and yellow (560 nm) emission. We show that the magnitude of the total built-in electric field across the QW can be controlled by the barrier material. Our results indicate that AlInN is a promising candidate to achieve (i) reduced wavelength shifts with increasing currents and (ii) strongly increased electron-hole wave function overlap, important for reduced optical recombination times. (C) 2014 AIP Publishing LLC

    Fast wavelength switching lasers using two-section slotted Fabry-Pérot structures

    Get PDF
    Fast wavelength switching of a two-section slotted Fabry–PÉrot laser structure is presented. The slot design enables operation at five discrete wavelength channels spaced by 10 nm by tuning one section of the device. These wavelengths operate with sidemode suppression ratio in excess of 35 dB, and switching times between these channels of approximately 1 ns are demonstrated

    Wheatstone bridge configuration for evaluation of plasmonic energy transfer

    Get PDF
    We propose an internal (on-chip) Wheatstone bridge configuration to evaluate the efficiency of near-field transducers (NFT) as used in heat-assisted magnetic recording (HAMR). The electric field enhancement between the transducer and the image plane is monitored by measuring the resistance of metal electrodes composing the image plane. The absorption of the enhanced electric field causes an increase in the metal temperature, and thereby, in its resistance whose variation is monitored with an internal Wheatstone bridge which is accurately balanced in the absence of the electric field

    Broadband quantum dot micro-light-emitting diodes with parabolic sidewalls

    Get PDF
    Arrays of long wavelength, self-organized InGaAs quantum dot micron sized light-emitting diodes (mu-LEDs) with parabolic sidewalls are introduced. The parabolic profiles of the mu-LEDs produced by resist reflow and controlled dry etching improve the extraction efficiency from the LEDs by redirection of the light into the escape cone by reflection from the sidewalls. A fourfold increase in the substrate emitted power density compared to a reference planar LED is measured. The reflected light is verified to be azimuthally polarized. The spectral width of the emission can be greater than 200 nm. (C) 2008 American Institute of Physics. (DOI: 10.1063/1.2898731

    Characterization of bulk and surface currents in strain-balanced InGaAs quantum-well mesa diodes

    Get PDF
    We compare the electrical and optical characteristics of mesa diodes based on In0.62Ga0.38As/In0.45Ga0.55As strain-balanced multiple-quantum wells (SB-MQW) with lattice-matched (LM) In0.53Ga0.47As diodes. The dark current density of the SB-MQW devices is at least an order of magnitude lower than the LM devices for voltages >0.4 V. Sidewall recombination current is only measured on SB-MQW diodes when exposed to a damaging plasma. While radiative recombination current dominates in the SB-MQW diodes, it is less than the diffusive current in the LM diodes for the same applied voltage. (C) 2004 American Institute of Physics. (DOI:10.1063/1.1835537

    Low-resistance Ni-based Schottky diodes on freestanding n-GaN

    Get PDF
    Schottky diodes formed on a low doped (5 x 10(16) cm(-3)) n-type GaN epilayer grown on a n(+) freestanding GaN substrate were studied. The temperature dependent electrical characteristics of Ni contacts on the as-grown material are compared with an aqueous, potassium hydroxide (KOH) treated surface. In both cases the diodes are dominated by thermionic emission in forward bias, with low idealities (1.04 at room temperature) which decrease with increasing temperature, reaching 1.03 at 413 K. The Schottky barrier height is 0.79 +/- 0.05 eV for the as-grown surface compared with 0.85 +/- 0.05 eV for the KOH treated surface at room temperature. This is consistent with an inhomogeneous barrier distribution. The specific on-state resistance of the diodes is 0.57 m Omega cm(2) The KOH treatment reduces the room temperature reverse leakage current density at -30 V to 1 x 10(-5) A cm(-2) compared to 6 x 10(-2) A cm(-2) for the as-grown samples. (C) 2007 American Institute of Physics. (DOI:10.1063/1.2799739

    Lasing from semiconductor microring on the end of an optical fiber

    Get PDF
    Isolated InGaAsP microrings with an outer diameter of 5.8 mum, a width of 1 mum, and a thickness of 0.41 mum were fabricated by epitaxial separation. Individual devices were bonded to multimode optical fiber using Van der Waals forces and optically pumped through the fiber. Lasing around 1505 nm was measured under pulsed and cw pumping at room temperature. The threshold pump power for pulsed operation was estimated to be 38 and 80 muW for cw operation. Multiple radial and azimuthal modes were present due to strong, three-dimensional confinement. Under strong pulsed pumping thermal effects caused the emission wavelength to chirp. (C) 2002 American Institute of Physics. (DOI: 10.1063/1.1496496

    Transfer print techniques for heterogeneous integration of photonic components

    Get PDF
    The essential functionality of photonic and electronic devices is contained in thin surface layers leaving the substrate often to play primarily a mechanical role. Layer transfer of optimised devices or materials and their heterogeneous integration is thus a very attractive strategy to realise high performance, low-cost circuits for a wide variety of new applications. Additionally, new device configurations can be achieved that could not otherwise be realised. A range of layer transfer methods have been developed over the years including epitaxial lift-off and wafer bonding with substrate removal. Recently, a new technique called transfer printing has been introduced which allows manipulation of small and thin materials along with devices on a massively parallel scale with micron scale placement accuracies to a wide choice of substrates such as silicon, glass, ceramic, metal and polymer. Thus, the co-integration of electronics with photonic devices made from compound semiconductors, silicon, polymer and new 2D materials is now achievable in a practical and scalable method. This is leading to exciting possibilities in microassembly. We review some of the recent developments in layer transfer and particularly the use of the transfer print technology for enabling active photonic devices on rigid and flexible foreign substrates

    High injection and carrier pile-up in lattice matched InGaAs/InP PN diodes for thermophotovoltaic applications

    Get PDF
    This article analyzes and explains the observed temperature dependence of the forward dark current of lattice matched In0.53Ga0.47As on InP diodes as a function of voltage. The experimental results show, at high temperatures, the characteristic current-voltage (I-V) curve corresponding to leakage, recombination, and diffusion currents, but at low temperatures an additional region is seen at high fields. We show that the onset of this region commences with high injection into the lower-doped base region. The high injection is shown by using simulation software to substantially alter the minority carrier concentration profile in the base, emitter and consequently the quasi-Fermi levels (QFL) at the base/window and the window/cap heterojunctions. We show that this QFL splitting and the associated electron "pile-up" (accumulation) at the window/emitter heterojunction leads to the observed pseudo-n=2 region of the current-voltage curve. We confirm this phenomenon by investigating the I-V-T characteristics of diodes with an InGaAsP quaternary layer (E-g=1 eV) inserted between the InP window (E-g=1.35 eV) and the InGaAs emitter (E-g=0.72 eV) where it serves to reduce the barrier to injected electrons, thereby reducing the "pile-up." We show, in this case that the high injection occurs at a higher voltage and lower temperature than for the ternary device, thereby confirming the role of the "accumulation" in the change of the I-V characteristics from n=1 to pseudo-n=2 in the ternary latticed matched device. This is an important phenomenon for consideration in thermophotovoltaic applications. We, also show that the activation energy at medium and high voltages corresponds to the InP/InGaAs conduction band offset at the window/emitter heterointerface
    corecore