46 research outputs found
The Orbital Period of the Be/Neutron Star Binary RX J0812.4-3114
We present the results of Rossi X-ray Timing Explorer observations of the Be
star X-ray binary system RX J0812.4-3114. A light curve obtained with the RXTE
All-Sky Monitor shows that the source is currently in an active state with
outbursts occurring at approximately 80 day intervals. The source underwent a
transition from an inactive state to this regular outburst state early in 1998.
An observation of RX J0812.4-3114 was obtained with the RXTE Proportional
Counter Array close to the time of a predicted maximum in March 1999 and strong
pulsations were detected at a period of 31.88 seconds. This confirms the result
of an earlier PCA observation by Reig & Roche which was serendipitously also
obtained near the predicted maximum flux of the 80 day period and also near the
start of the current active state. We interpret the periodicity in the ASM
light curve as indicating the orbital period of RX J0812.4-3114 with outbursts
occurring around periastron passage
The Orbit and Position of the X-ray Pulsar XTE J1855-026 - an Eclipsing Supergiant System
A pulse timing orbit has been obtained for the X-ray binary XTE J1855-026
using observations made with the Proportional Counter Array on board the Rossi
X-ray Timing Explorer. The mass function obtained of ~16Mo together with the
detection of an extended near-total eclipse confirm that the primary star is a
supergiant as predicted. The orbital eccentricity is found to be very low with
a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be
6.0724 +/- 0.0009 days using an improved and extended light curve obtained with
RXTE's All Sky Monitor. Observations with the ASCA satellite provide an
improved source location of R.A. = 18h 55m 31.3s}, decl. = -02o 36' 24.0"
(2000) with an estimated systematic uncertainty of less than 12". A
serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA
observations.Comment: Accepted for publication in the Astrophysical Journa
Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations
We present an investigation of long-term modulation in the X-ray light curves
of five little-studied candidate high-mass X-ray binaries using the Swift Burst
Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at
periods of 49.6 and 44 days, respectively, which are interpreted as orbital
periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray
Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s
pulsations were previously found with XMM. Swift J1816.7-1613 exhibits
complicated behavior. The strongest peak in the power spectrum is at a period
near 150 days, but this conflicts with a determination of a period of 118.5
days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit
modulation near 54 days, but the extended BAT observations suggest modulation
at slightly longer than double this at approximately 111 days. There appears to
be a long-term change in the shape of the modulation near 111 days, which may
explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was
previously proposed to be a Be star system with an orbital period of ~30 days
from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The
origins of these periods are unclear, although they might be the orbital period
and a superorbital period respectively. For all five sources, the long-term
variability, together with the combination of orbital and proposed pulse
periods, suggests that the sources contain Be star mass donors.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 27
figures. (v2 corrects citation
Rossi X-ray Timing Explorer Observations of the X-ray Pulsar EXO 1722-363 - a Candidate Eclipsing Supergiant System
Observations made of the X-ray pulsar EXO 1722-363 using the Proportional
Counter Array and All Sky Monitor on board the Rossi X-ray Timing Explorer
reveal the orbital period of this system to be 9.741 +/- 0.004 d from periodic
changes in the source flux. The detection of eclipses, together with the values
of the pulse and orbital periods, suggest that this source consists of a
neutron star accreting from the stellar wind of an early spectral type
supergiant companion. Pulse timing measurements were also obtained but do not
strongly constrain the system parameters. The X-ray spectra can be well fitted
with a model consisting of a power law with a high energy cutoff and, for some
spectra, a blackbody component with a temperature of approximately 0.85 keV.Comment: Accepted for publication in The Astrophysical Journal. 27 pages
including 10 figure