15 research outputs found

    Analysis Of Cellular Adhesion On Superhydrophobic And Superhydrophilic Vertically Aligned Carbon Nanotube Scaffolds

    No full text
    We analyzed GFP cells after 24 h cultivated on superhydrophilic vertically aligned carbon nanotube scaffolds. We produced two different densities of VACNT scaffolds on Ti using Ni or Fe catalysts. A simple and fast oxygen plasma treatment promoted the superhydrophilicity of them. We used five different substrates, such as: as-grown VACNT produced using Ni as catalyst (Ni), as-grown VACNT produced using Fe as catalyst (Fe), VACNT-O produced using Ni as catalyst (NiO), VACNT-O produced using Fe as catalyst (FeO) and Ti (control). The 4′,6-diamidino-2-phenylindole reagent nuclei stained the adherent cells cultivated on five different analyzed scaffolds. We used fluorescence microscopy for image collect, ImageJ® to count adhered cell and GraphPad Prism 5® for statistical analysis. We demonstrated in crescent order: Fe, Ni, NiO, FeO and Ti scaffolds that had an improved cellular adhesion. Oxygen treatment associated to high VACNT density (group FeO) presented significantly superior cell adhesion up to 24 h. However, they do not show significant differences compared with Ti substrates (control). We demonstrated that all the analyzed substrates were nontoxic. Also, we proposed that the density and hydrophilicity influenced the cell adhesion behavior.48365371Haubold, A.D., Shim, H.S., Bokros, J.C., (1979) Biocompatibility of Clinical Implants Materials, 2, pp. 520-532. , D.F. WilliamsCenni, E., Granchi, D., Arciola, C.R., Ciapetti, G., Savarinol, S.S., Cavedagna, D., Di Leo, A., Pizzoferrato, A., (1995) Biomaterials, 16 (16), pp. 1223-1227Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forró, L., Benoit, W., Zuppiroli, L., (1999) Appl. Phys. A Mater. Sci. Process., 69 (3), pp. 255-260Tran, P.A., Zhang, L., Webster, T.J., (2009) Adv. Drug Deliv. Rev., 61 (12), pp. 1097-1114Lim, J.Y., Shaughnessy, M.C., Zhou, Z.Y., Noh, H., Vogler, E.A., Donahue, H.J., (2008) Biomaterials, 29 (12), pp. 1776-1784Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J., (2006) Carbon, 44 (6), pp. 1034-1047Lin, Y., Taylor, S., Li, H., Fernando, K.A., Qu, L., Wang, W., Gu, L., Sun, Y.P., (2004) J. Mater. Chem., 14 (4), pp. 527-541Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., (2006) Chem. Rev., 106 (3), pp. 1105-1136Miller, D.C., Vance, R.J., Thapa, A., Haberstroh, M., Webster, T.J., (2004) Appl. Bionics Biomech., 2 (1), pp. 1754-2103Thomas, V., Dean, D.R., Vohra, Y.K., (2006) Curr. Nanosci., 2 (3), pp. 155-177Stevens, M.M., George, J.H., (2005) Science, 310, pp. 1135-1138Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y., Riviere, J.E., (2005) Toxicol. Lett., 155 (3), pp. 377-384Ramos, S.C., Vasconcelos, G., Antunes, E.F., Lobo, A.O., Trava-Airoldi, V.J., Corat, E.J., (2010) Surf. Coat. Technol., 204, pp. 3073-3077Lobo, A.O., Marciano, F.R., Ramos, S.C., Machado, M.M., Corat, E.J., Corat, M.A.F., (2011) Mater. Sci. Eng. C, 31 (7), pp. 1505-1511Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., (2006) Carbon, 44 (11), pp. 2202-2211Hogan, B., Beddington, R., Costantini, F., Lacy, E., (1994) Manipulating the Mouse Embryo - A Laboratory Manual, p. 260. , 2nd ed. EUAOwens, D.K., Wendt, R.C., (1969) J. Appl. Polym. Sci., 13, pp. 1741-1747Van Oss, C.J., Good, R.J., Chaundhury, M.K., (1986) J. Colloid Interface Sci., 111, pp. 378-390Schneider, R.P., (1996) J. Colloid Interface Sci., 182, pp. 204-213Bokara, K.K., Kim, J.Y., Lee, Y.I., Yun, K., Webster, T.J., Lee, J.E., (2013) Anat. Cell Biol., 46 (2), pp. 85-92Harrison, B.S., Atala, A., (2007) Biomaterials, 28 (2), pp. 344-353Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroʇlu, E., Vig, K., Dennis, V.A., Singh, S.R., (2012) Int. J. Nanomedicine, 7, pp. 5361-5374Van Hooijdonk, E., Bittencourt, C., Snyders, R., Colomer, J.F., Beilstein, (2013) J. Nanotechnol., 4, pp. 129-152Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., Nishimune, Y., (1997) FEBS Lett., 407 (3), pp. 313-319Marsi, T.C.O., Santos, T.G., Pacheco-Soares, C., Corat, E.J., Marciano, F.R., Lobo, A.O., (2012) Langmuir, 28 (9), pp. 4413-4424Ruiz, O.N., Fernando, K.A., Wang, B., Brown, N.A., Luo, P.G., McNamara, N.D., Vangsness, M., Bunker, C.E., (2011) ACS Nano, 5 (10), pp. 8100-810

    In Vitro And In Vivo Studies Of A Novel Nanohydroxyapatite/superhydrophilic Vertically Aligned Carbon Nanotube Nanocomposites

    No full text
    An association between in vitro and in vivo studies has been demonstrated for the first time, using a novel nanohydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube (nHAp/VAMWCNT-O2) nanocomposites. Human osteoblast cell culture and bone defects were used to evaluate the in vitro extracellular matrix (ECM) calcification process and bone regeneration, respectively. The in vitro ECM calcification process of nHAp/VAMWCNT-O2 nanocomposites were investigated using alkaline phosphatase assay. The in vivo biomineralization studies were carried out on bone defects of C57BL/6/JUnib mice. Scanning electron microscopy, micro-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and X-ray difractometry analyses confirmed the presence of the nHAp crystals. nHAp/VAMWCNT-O2 nanocomposites induced in vitro calcification of the ECM of human osteoblast cells in culture after only 24 h. Bone regeneration with lamellar bone formation after 9 weeks was found in the in vivo studies. Our findings make these new nanocomposites very attractive for application in bone tissue regeneration. Graphical Abstract: [Figure not available: see fulltext.] © 2013 Springer Science+Business Media New York.24717231732Nerem, R.M., Cellular engineering (1991) Ann Biomed Eng, 19, pp. 529-545. , 10.1007/BF02367396 1:STN:280:DyaK38%2FnsVKguw%3D%3DGriffith, L.G., Naughton, G., Tissue engineering: Current challenges and expanding opportunities (2002) Science, 295, pp. 1009-1014. , 10.1126/science.1069210 1:CAS:528:DC%2BD38Xht1GksL0%3DLanza, R., Langer, R., Vacanti, J., (2007) Principles of Tissue Engineering, , 3 Academic Press San DiegoSato, M., Webster, T., Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications (2004) Expert Rev Med Devices, 1 (1), pp. 105-114. , 10.1586/17434440.1.1.105 1:CAS:528:DC%2BD2cXps1ymt7o%3DSanosh, K.P., Chu, M.C.H., Balakrishnan, A., Lee, Y.J., Kim, T.N., Cho, S.J., Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition (2009) Curr Appl Phys, 9 (6), pp. 1459-1462. , 10.1016/j.cap.2009.03.024Qia, H.J., Teo, K.B.K., Lau, K.K.S., Boyce, M.C., Milne, W.I., Robertson, J., Gleason, K.K., Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation (2003) J Mech Phys Solids, 51 (11-12), pp. 2213-2237. , 10.1016/j.jmps.2003.09.015Aryal, S., Bahadur, K.C.R., Dharmaraj, N., Kim, K.W., Kim, H.Y., Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nanomatrix (2006) Scr Mater, 54, pp. 131-135. , 10.1016/j.scriptamat.2005.09.050 1:CAS:528:DC%2BD2MXhtFOgsLbMBoccaccinia, A.R., Choa, J., Subhania, T., Kayab, C., Kayac, F., Electrophoretic deposition of carbon nanotube-ceramic nanocomposites (2010) J Eur Ceram Soc, 30, pp. 1115-1129. , 10.1016/j.jeurceramsoc.2009.03.016Hahna, B.-D., Lee, J.-M., Park, D.-S., Choi, J.-J., Ryua, J., Yoon, W.-H., Lee, B.-K., Kim, H.-E., Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition (2009) Acta Biomater, 5, pp. 3205-3214. , 10.1016/j.actbio.2009.05.005Najafi, H., Nemati, Z.A., Sadeguian, Z., Inclusion of carbon nanotubes in a hydroxyapatite sol-gel matrix (2009) Cer Inter, 35, pp. 2987-2991. , 10.1016/j.ceramint.2009.03.017 1:CAS:528:DC%2BD1MXotlyhtbw%3DLobo, A.O., Corat, M.A.F., Ramos, S.C., Matsushima, J.T., Granato, A.E.C., Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application (2010) Langmuir, 26 (23), pp. 18308-18314. , 10.1021/la1034646 1:CAS:528:DC%2BC3cXhtlWitb%2FPManso, M., Jiménez, C., Morant, C., Herrero, P., Martínez-Duart, J.M., Electrodeposition of hydroxyapatite coatings in basic conditions (2000) Biomaterials, 21, pp. 1755-1761. , 10.1016/S0142-9612(00)00061-2 1:CAS:528:DC%2BD3cXkvFCrsLs%3DEliaz, N., Eliyahu, M., Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by realtime electrochemical atomic force microscopy (2007) J Biomed Mater Res A, 80, pp. 621-634Castle, J.E., Curve-fitting in XPS using extrinsic and intrinsic background structure (2000) J Electron Spectrosc Relat Phenom, 106, pp. 65-80. , 10.1016/S0368-2048(99)00089-4 1:CAS:528:DyaK1MXnvFalu7k%3DShirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold (1972) Phys Rev B, 5 (12), pp. 4709-4713. , 10.1103/PhysRevB.5.4709Lobo, A.O., Marciano, F.R., Regiani, I., Ramos, S.C., Matsushima, J.T., Corat, E.J., Proposed model for growth preference of plate-like nanohydroxyapatite crystals on super hydrophiliccertically aligned carbon nanotubes by electrode position (2011) Theor Chem Acc, 130, pp. 1071-1082. , 10.1007/s00214-011-0993-x 1:CAS:528:DC%2BC3MXhsFars7rKTaube, F., Ylmén, R., Shchukarev, A., Nietzsche, S., Norén, J.G., Morphological and chemical characterization of tooth enamel exposed to alkaline agents (2010) J Dent, 38, pp. 72-81. , 10.1016/j.jdent.2009.09.006 1:CAS:528:DC%2BD1MXhsFGrsLnNMellors, R.C., Solberg, T.N., Electron microprobe analysis of human trabecular bone (1966) Clin Orthop Rel Res., 45, pp. 157-167. , 1:STN:280:DyaF287kt1alsg%3D%3DMellors, R.C., Solberg, T.N., Huang CY Electron probe microanalysis. I. Calcium and phosphorus in normal human cortical bone (1964) Lab Invest, 13 (3), pp. 183-195. , 1:CAS:528:DyaF2MXhslelsA%3D%3DSun, L., Chow, L.C., Frukhtbeyn, S.A., Bonevich, J.E., Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios (2010) J Res Natl Inst Stand Technol, 115 (4), pp. 243-255. , 10.6028/jres.115.018 1:CAS:528:DC%2BC3cXptVGlur4%3DKingshott, P., Andersson, G., McArthur, S.L., Griesser, H.J., Surface modification and chemical surface analysis of biomaterials (2011) Curr Opin Chem Biol, 15, pp. 667-676. , 10.1016/j.cbpa.2011.07.012 1:CAS:528:DC%2BC3MXht12ktbrFElliott, J.C., Recent studies of apatite and other calcium orthophospates (1998) Calcium Phosphate Materials, Fundamentals, p. 25. , E. Bres Hardouin (eds) Sauramps Medical MonpellierRaikar, G.N., Ong, J.L., Lucas, L.C., Hydroxyapatite characterized by XPS (1997) Surf Sci Spectra, 4 (1), pp. 9-13. , 10.1116/1.1247808Lou, L., Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS) (2008) Appl Surf Sci, 254, pp. 6706-6709. , 10.1016/j.apsusc.2008.04.085 1:CAS:528:DC%2BD1cXhtVagsbzOChusuei, C.C., Goodman, D.W., Van Stipdonk, M.J., Justes, D.R., Schweikert, E.A., Calcium phosphate identification using XPS and time-of-flight cluster SIMS (1997) Anal Chem., 71, pp. 149-153. , 10.1021/ac9806963Quarles, L.D., Yohay, D.A., Lever, L.W., Caton, R., Wenstrup, R.J., Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development (1992) J Bone Miner Res, 7, pp. 683-692. , 10.1002/jbmr.5650070613 1:STN:280:DyaK3s%2FjsVCgsw%3D%3DAshton, B.A., Abdullah, F., Cave, J., Williamson, M., Sykes, B.C., Couch, M., Poser, J.W., Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow: Preliminary assessment of their osteogenicity (1985) Bone, 6, pp. 313-319. , 10.1016/8756-3282(85)90321-7 1:STN:280:DyaL287lvFeqtg%3D%3DBalani, K., Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro (2007) Biomaterials, 28 (4), pp. 618-624. , 10.1016/j.biomaterials.2006.09.013 1:CAS:528:DC%2BD28XhtFKhsbrFLahiri, D., Benaduce, A.P., Rouzaud, F., Solomon, J., Keshri, A.K., Kos, L., Agarwal, A., Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating (2011) J Biomed Mater Res A., 96 (1), pp. 1-12Hahn, B.D., Lee, J.M., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Lee, B.K., Kim, H.E., Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition (2009) Acta Biomater, 5 (8), pp. 3206-3214. , 10.1016/j.actbio.2009.05.00

    An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOBiocompatibility tests were performed on vertically-aligned multi-walled carbon nanotube (MWCNT) films produced by microwave plasma chemical vapor deposition on titanium substrates with iron (Fe) and nickel (Ni) as catalysts. The cell adhesion and morphology of L-929 mouse fibroblast cells were studied by high resolution scanning electron microscopy, after up to 7 days incubation periods. Cell viability and proliferation were evaluated by two "in vitro" tests: (1) 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), and (2) lactate dehydrogenase (LDH) assays. Low level of bioavailable Fe and Ni was determined by inductively coupled plasma optical emission spectrometry. Neither functionalization nor purification of MWCNT films was necessary to obtain good response to the biocompatibility tests. Efficient cell growth and non-toxicity suggest the use MWCNTs in tissue regeneration. The MWCNT films stimulated the cell growth, showing a proliferation 20% higher than on Ti481245254FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP [08/116425, 07/00013-4]08/116425; 07/00013-

    Biocompatibility Differences Between Dispersed And Vertically-aligned Carbon Nanotubes: An In Vitro Assays Review

    No full text
    An overview about carbon nanotube (CNT) production and quality parameters will be presented, as well a review of current literature about "in vitro"assays commonly used to evaluate the biocompatibility of CNT. The limits of colorimetric assays for CNTs evaluation will be discussed, using comparisons between dispersed CNT and CNT arrays. The influence of nanotopography and wettability of CNT scaffolds for cell adhesion will be shown. Studies carried out in our laboratories with vertically-aligned carbon nanotubes (VACNT) will also be presented. We have shown the interaction among CNT (VACNT) and four cell lines: mouse fibroblasts (L-929), mouse embryo fibroblast (C57/BL6) with or without green fluorescent protein (GFP) and human osteoblast (SaOS-2). The biocompatibility tests were performed with in vitro tests on raw-VACNT and after superficial modification by O2 plasma, which changes its hydrophobic character. The non-toxicity, cell viability, proliferation and cell adhesion were evaluated by: (i) 2-(4,5-dimethyl-2-thioazoly)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assay; (ii) Lactate dehydrogenase (LDH) assay; (iii) neutral red (NR) assay; (iv) Scanning electron microscopy (SEM); and fluorescence microscopy. The influence of catalyst type, VACNT density and superficial modification were evaluated by morphological, structural and superficial techniques: SEM, Transmission electron microscopy (TEM), Raman spectroscopy, contact angle (CA) and X-Ray Photoelectron Spectroscopy (XPS). High cell viability, exceptional cell adhesion and preference were achieved. © 2009 by Nova Science Publishers, Inc. All rights reserved.281316Peppas, N.A., Langer, R., New challenges in biomaterials (1994) Science, 263, pp. 1715-1720Xu, T., Zhang, N., Nichols, H.L., Shi, D.L., Wen, X.J., Modification of nanostructured materials for biomedical applications (2007) Materials Science & Engineering C-biomimetic and Supramolecular Systems, 27 (3), pp. 579-594Goldberg, M., Langer, R., Jia, X., Nanostructured materials for applications in drug delivery and tissue engineering (2007) Journal of Biomaterials Science, 18 (3), pp. 241-268Thomas, V., Dean, D.R., Vohra, Y.K., Nanostructured Biomaterials for regenerative medicine (2006) Current Nanoscience, 2 (3), pp. 155-177Bhattacharyya, S., Guillott, S., Dabboue, H., Tranchant, J.F., Salvetat, J.P., Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds (2008) Biomacromolecules, 9 (2), pp. 505-509Cui, D., Advances and Prospects on Biomolecules Functionalized Carbon Nanotubes (2007) Journal of Nanoscience and Nanotechnology, 7 (4-5), pp. 1298-1314Pham, Q.P., Sharma, U., Mikos, A.G., Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review (2006) Tissue Engineering, 12 (5), pp. 1197-1211Salvetat, J.P., Bonard, J.M., Thomson, N.H., Mechanical properties of carbon nanotubes (1999) Applied Physics A: Materials Science & Processing, 69, pp. 255-260Endo, M., Strano, M.S., Ajayan, P.M., Potential applications of carbon nanotubes (2008) Carbon nanotubes: topics in applied physics, 111, pp. 13-61Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., Electronic, thermal and mechanical properties of carbon nanotubes (2004) Philosophical transactions of the royal society of london series a-mathematical physical and engineering sciences, 362 (1823), pp. 2065-2098Price, R.L., Waid, M.C., Haberstroh, K.M., Webster, T.J., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887Cýnar, O., Yuda, Y., Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters (2006) Fullerenes, Nanotubes, and Carbon Nanostructures, 14, pp. 17-37Suh, D.J., Park, T.J., Kim, J.H., Kim, K.L., Fast sol-gel synthetic route to high surface area alumina aerogels (1997) Chem. Mater., 9 (9), pp. 1903-1905Ivanov, V., Nagy, J.B., Lambin, P., Lucas, A., Zhang, X.B., Zhang, X.F., Bernaerts, D., Van Landuyt, J., The study of carbon nanotubules produced by catalytic method (1994) Chem.Phys. Lett., 223 (4), pp. 329-335Xu, C., Zhu, J., One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis (2004) Nanotechnolog, 11, pp. 1671-1681Schwarz, J.A., Contescu, C., Contescu, A., Methods for preparation of catalytic materials (1995) CHEMICAL REVIEWS, 95 (3), pp. 477-510Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I., Production of nanotubes by the catalytic decomposition of different carbon-containing compounds (2000) Applied Catalysis A: General, 199 (2), pp. 245-255Zhang, Q., Yoon, S.F., Ahn, J., Gan, B., Rusli, Y.U., Carbon films with high density nanotubes produced using microwave plasma assisted CVD J (2000) Phys. Chem. Solids, 61, pp. 1179-1183Choi, Y.C., Bae, D.J., Lee, Y.H., Lee, B.S., Han, I.T., Choi, W.B., Lee, N.S., Kim, J.M., Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition (2000) Synth. Met., 108, pp. 159-163Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide Chemical Physics Letters, 260 (3-4), pp. 471-475See, C.H., Harris, A.T., A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition (2007) Ind. Eng. Chem. Res., 46, pp. 997-1012Stevens, M.M., George, J.H., Exploring and Engineering the Cell Surface Interface (2005) Science, 310 (5751), pp. 1135-1138Chung, Y.H., Jou, S., Carbon nanotubes from catalytic pyrolysis of polypropylene (2005) Mater. Chem. Phys., 92 (1), pp. 256-259Nakazawa, S., Yokomori, T., Mizomoto, M., Flame synthesis of carbon nanotubes in a wall stagnation flow (2005) Chem. Phys. Lett., 403 (1-3), pp. 158-162Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295Paradise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials & Design, 28 (5), pp. 1477-1489Zhang, Y.F., Gamo, M.N., Xiao, C.Y., Ando, T., Liquid phase synthesis of carbon nanotubes (2002) Physica B, 323 (1-4), pp. 293-295Chen, Y., Gerald, J.F., Chadderton, L.T., Chaffron, J., Solid-state formation of carbon and boron nitride nanotubes (2000) Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, 343 (3), pp. 63-67Awasthi, K., Kamalakaran, R., Singh, A.K., Srivastava, O.N., Ball-milled carbon and hydrogen storage (2002) Int. J.Hyd. Eng., 27, pp. 425-432Amirov, R.H., Asinovsky, E.I., Isakaev, E.K., Kiselev, V.I., Thermal plasma torch for synthesis of carbon nanotubes (2006) High temperature material processes, 10 (2), pp. 197-205Belin, T., Epron, F., Characterization methods of carbon nanotubes: a review (2005) Materials Science and Engineering B, 119, pp. 105-118Zhou, W., Wang, Z.L., (2007), Scanning Microscopy for Nanotechnology Techniques and Applications, HardcoverZhong, L.W., Chun, H., Electron Microscopy of Nanotubes (2003), Kluwer Academic PublishersDillon, A.C., Yudasaka, M., Dresselhaus, M.S., Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials (2004) Journal of Nanoscience and Nanotechnology, 4 (7), pp. 691-703Sniadecki, N.J., Desai, R.A., Ruiz, S.A., Chen, C.S., Nanotechnology for Cell-Substrate Interactions (2005) Annals of Biomedical Engineering, 34 (1), pp. 59-74Kataura, H., Kumazawaa, Y., Maniwaa, Y., Umezub, I., Suzuki, S., Ohtsuka, Y.C., Achiba, Y., Optical Properties of Single-Wall Carbon Nanotubes (1999) Synthetic Metals, 103, pp. 2555-2558Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes (2007) Carbon, 45 (5), pp. 913-921Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44 (11), pp. 2202-2211Maultzsch, J., Reich, S., Thomsen, C., Dobardi, E., Milevi, I., Damnjanovi, M., Phonon dispersion of carbon nanotubes (2002) Solid State Communications, 121 (9-10), pp. 471-474Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., Robertson, J., Phonon linewidths and electron-phonon coupling in graphite and nanotubos (2006) Physical Review B, 73, pp. 155426-155432Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubos (2005) Surface Science Reports, 58, pp. 1-109Eklund, P.C., Holden, J.M., Jishi, R.A., Vibrational modes of carbon nanotubesSpectroscopy and theory (2005) Carbon, 33 (7), pp. 959-972Yusa, H., Watanuki, T., X-ray diffraction of multiwalled carbon nanotube under high pressure: Structural durability on static compression (2005) Carbon, 43 (3), pp. 519-523Shpak, A.P., Kolesnik, S.P., Mogilny, G.S., Petrov, Y.N., Sokhatsky, V.P., Trophimova, L.N., Shanina, B.D., Gavriljuk, V.G., Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubos (2007) Acta Materialia, 55, pp. 1769-1778Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353Huang, W., Wang, Y., Luo, G., Wei, F., 99% purity multi-walled carbon nanotubes by vacuum high-temperature annealing (2003) Carbon, 41, pp. 2585-25909Li, J., Zhang, Y., A simple purification for single-walled carbon nanotubos (2005) Physica E: Low-dimensional Systems and Nanostructures, 28 (3), pp. 309-312Itkis, M.E., Perea, D.E., Niyogi, R.J.S., HaddonJ, R.C., Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes (2005) Am. Chem. Soc., 127 (10), pp. 3439-3448Jung, Y.S., Jeon, D.Y., Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition (2002) Applied Surface Science, 193 (1-4), pp. 129-137Zhao, C.G., Ji, L.J., Liu, H.J., Hu, G.J., Zhang, S.M., Yang, M.S., Yang, Z.Z., Functionalized carbon nanotubes containing isocyanate groups (2004) Journal of Solid State Chemistry, 177 (12), pp. 4394-4398Okpalugo, T.I.T., Papakonstantinou, P., Murphy, H., McLaughlin, J., Brown, N.M.D., High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs (2005) Carbon, 43 (1), pp. 153-161Yanl, Y.H., Cuil, J., Chan-Park, M.B., Wang, X., Wu, Q.Y., Systematic studies of covalentfunctionalization of carbon nanotubes viaargon plasma-assisted UV grafting (2007) Nanotechnology, 18, pp. 115712-115719Miles, J., www.measurement.gov.au/assets/documents/nmiinternet/NMI_TR_1220061130091 501.pdf, Nanometrology: The Critical Role of Measurement in Supporting Australian Nanotechnology. 2006 [08/09/15]Freiman, S., Hooker, S., Migler, K., Arepalli, S., Measurement Issues in Single Wall Carbon Nanotubes (2008) NIST Special Publication, 960 (19), p. 40http://www.msel.nist.gov/Nanotube2/Carbon_Nanotubes_Guide.htm, National Intitute of Standards and Technology (NIST). Measurement Issues in Single Wall Carbon Nanotubes. 2005 [08/09/15]Dee, K.C., Puleo, D.A., Bizios, R., (2002), An Introduction To Tissue-Biomaterial Interactions Wiley, New YorkRatner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine (2004), Second edition. Academic Press, San DiegoHelland, Å., Wick, P., Koehler, A., Schmid, K., Som, C., Reviewing the environmental and human health knowledge base of carbon nanotubes (2007) Environ Health Perspect, 115 (8), pp. 1125-1131Mattson, M.P., Haddon, R.C., Rao, A.M., Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth (2001) J Mol. Neurosci., 14, pp. 175-182Abarrategi, A., Gutiérrez, M.C., Moreno-Vicente, C., Hortigüela, M.J., Ramos, V., López-Lacomba, J.L., Ferrer, M.L., Monte, F., Multiwall carbon nanotube scaffolds for tissue engineering purposes (2008) Biomaterials, 29, pp. 94-102Berridge, M.V., Herst, P.M., Tan, A.S., Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction (2005) Biotechnol Annu Rev, 11, pp. 127-152Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Method, 65, pp. 55-63Barltrop, J.A., Owen, T.C., 5-(3-Carboxymathoxyphenil)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl) tetrazolium, inner salt (MTS) and related analgs of 3-(4,5-dimethylthiazolyl)-2 5-diphenyltetrazolium bromide (MTT) reducing to purple water soluble formazans a cell-viability indicators (1991) Bioorg. Med. Chem. Lett., 1 (11), pp. 611-614Borenfreund, E., Puener, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1984) J. Tissue Culture Method, 9, p. 1Decker, T., Lohmann-Matthes, M.L., A quick and simple method 228 for the quantitation of lactate dehydrogenase release in measurements of cellular 229 cytotoxicity and tumor necrosis factor (TNF) activity (1988) J. Immunol. Methods, 15 (230), pp. 61-69Alamar BlueTM product information pamphlet. BioSource International, Inc., USAO'Brien, J., Wilson, I., Orton, T., Pognan, F., Investigation of alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity (2000) Eur. J. Biochem, 267, pp. 5421-5426Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein dye binding (1976) Annal Biochem, 72, pp. 248-254Matejovicova, M., Mubagwa, K., Flameng, W., Effect of vanadate on protein determination by the commassie brilliant blue microasay procedure (1997) Annal Biochem, 245, pp. 252-254De Nicola, M., Gattia, D.M., Belluci, S., De Bellis, G., Micciula, F., Pastore, R., Tiberia, A., Ghibelli, L., Effect of different carbon nanotubes on cell viability and proliferation (2007) Journal Physics Condens. Matter, 19, pp. 395013-395020Mwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) Journal of Materials Chemistry, 17 (19), pp. 1894-1902Zhang, X., Wang, X., Lu, Q., Fu, C., Influence of carbon nanotube scaffolds on human cervical carcinoma HeLa cell viability and focal adhesion kinase expression (2008) Carbon, 46 (3), pp. 453-460Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Physica S.Sol. B, 244 (11), pp. 4356-4359Zhang, D., Yi, C., Zhang, J., Chen, Y., Yao, X., Yang, M., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, 18, pp. 475102-475111Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion (1992) Cell, 69, pp. 11-25Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M., Assembly and mechanosensory function of focal contacts (2001) Nat. Rev. Mol. Cell. Biol, 2, pp. 793-805Krysko, D.V., Vanden Berghe, T., D' Herde, K., Vandenabeele, P., Apoptosis and necrosis: Detection, discrimination and phagocytosis (2008) Methods, 44, pp. 205-221Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., Henson, P.M., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages (1992) J Immunol, 148 (7), pp. 2207-2216Denecker, G., Vercammen, D., Steemans, M., Vanden Berghe, T., Brouckaert, G., Van Loo, G., Zhivotovsky, B., Vandenabeele, P., Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria (2001) Cell Death Differ, 8 (8), pp. 829-840Kroemer, G., Reed, J.C., Mitochondrial control of cell death (2000) Nat Med, 6 (5), pp. 513-519Van Loo, G., Demol, H., Van Gurp, M., Hoorelbeke, B., Schotte, P., Beyaert, R., Zhivotovsky, B., Vandenabeele, P., A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid (2002) Cell Death Differ, 9 (3), pp. 301-308Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD (1998) Nature, 391 (6662), pp. 43-50Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Billups, W.E., Wilson, L.J., Mikos, A.G., Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering (2007) Biomaterials, 28 (28), pp. 4078-4090Vanden, B.T., Declercq, W., Vandenabeele, P., NADPH oxidases: New players in TNIF-induced necrotic cell death (2007) Molecular Cell, 26 (6), pp. 769-771Borm, P.J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Oberdorster, E., The potential risks of nanomaterials: a review carried out for ECETOC (2006) Part Fibre Toxicol, 3 (11), pp. 1-35Lam, C.W., James, J.T., McCluskey, R., Hunter, R.I., Pulmonary toxicity of a single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134Jia, G., Wang, H., Ya, N.L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X., Cytotoxicity of carbon nanomaterails: single-wall nanotube, multi-wall nanotube, and fullerene (2005) Environ Sci Technol, 39 (5), pp. 1378-1383Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Murray, A.R., Gandelsman, V.Z., Maynard, A., Baron, P., Exposure to carbon nanotube material :assessment of nanotube cytotoxicity using human keratinocyte cells (2003) J Toxicol. Envirom. Health A., 66, pp. 1909-1926Bohm, L., Schild, H., Apoptosis: the complex scenario for a silent cell death (2003) Mol. Imaging Biol., 5, pp. 2-14Coppola, S., Ghilbelli, L., GSH extrusion and and the mitochondrial pathway of apoptotic signalling (2000) Biochem Soc Trans, 28, pp. 56-61Fiers, W., Beyaert, R., Declerq, W., Vandenabeele, P., More than one way to die: apoptosis, necrosis and reactive oxygen damage (1999) Oncogene, 18, pp. 719-730Edinger, A.L., Thompson, C.B., DeatRatner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine. Second edition (2004), Academic Press, San DiegoMagrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Forro, L., Cellular toxicity of carbon-based nanomaterials (2006) Nano Lett.;, 6, pp. 1121-1125Tian, F.R., Cui, D.X., Schwarz, H., Estrada, G.G., Kobayashi, H., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts (2006) Toxicol in Vitro, 20 (7), pp. 1202-1212Brown, D.M., Kinloch, I.A., Bangert, U., Windle, A.H., Walter, D.M., Walker, G.S., An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis (2007) Carbon, 45 (9), pp. 1743-1756Manna, S.K., Sarkar, S., Barr, J., Wise, K., Barrera, E.V., Jejelowo, O., Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes (2005) NanoLetters, 5 (9), pp. 1676-1684Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., Beguin, F., In vitro studies of carbon nanotubes biocompatibility (2006) Carbon, 44 (1), pp. 106-1111Price, R.A., Waid, M.C., Karen, M., Haberstroh, K.M., Selective bone cell adhesion on formulations containing carbon nanofibers (2003) Biomaterials, 24, pp. 1877-1887Zanello, L.P., Zhao, B., Hu, H., Haddon, R.C., Bone cell proliferation on carbon nanotubes (2006) Nano Lett, 6, pp. 562-567Naguib, N.N., Mueller, Y.M., Bojuczuc, P.M., Effect of carbon nanotube structure on the binding of antibodies (2005) Nanotech, 16, pp. 567-571Giannona, S., Firkowska, I., Rojas-Chapana, J., Giersig, M., Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblasts-like cells (2007) J. Nanosc. and Nanotec., 7, pp. 1679-1683Lobo, A.O., Antunes, E.F., Machado, A.H.A., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Cell viability and adhesion on as grown multi-wall carbon nanotube films (2008) Mater. Sci. Eng. C, 28 (2), pp. 264-269Lobo, A.O., Antunes, E.F., Palma, M.B.S., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., Biocompatibility of multi-walled carbon nanotubes films growth titanium and silicon surfaces (2008) Mater. Sci. Eng. C, 28 (4), pp. 532-538Gabay, T., Jakobs, E., Bem-Jacob, E., Engineered self-organization of neuronal networks using carbon nanotube clusters (2005) Physica A, 21 (350), pp. 611-621Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Fabrication and biocompatibility of carbon nanotube-based 3d networks as scaffolds for cell seeding and growth (2004) Nano Letters, 4, pp. 2233-2236Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J Biol Chem, 278 (50), pp. 50212-50216Cui, D.X., Tian, F.R., Ozkan, C.S., Wang, M., Gao, H.J., Effect of single wall carbon nanotubes on human HEK293 cells (2005) Toxicol Lett, 155 (1), pp. 73-85Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol Lett, 160 (2), pp. 121-126Worle-Knirsch, J.M., Pulskamp, K., And Krug, H.F., Oops they did it again! Carbon Nanotubes hoax scientists in viability Assays (2006) Nano Lett, 6, pp. 1261-1268Casey, A., Davoren, M., Herzog, E., Lyng, F., Byrne, H., Chambers, G., Probing the interaction of single-walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45 (1), pp. 34-40Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single-walled carbon nanotubes and various

    Columnar Cvd Diamond Growth Structure On Irregular Surface Substrates

    No full text
    Columnar grain structure is always observed in CVD-diamond growth and is an important parameter to identify the morphology of thin and thick films. Structure defects, aspects of onset nucleation and film growth mechanisms can also be related to columnar growth. In this work we focused our attention on the columnar structure of CVD-diamond grown on irregular surfaces. We observed that there is a relationship among curvature radius of the substrate surface, the spread of the column volume and the growth rate of the diamond film. Growth rates on spherical surfaces of around 0.5 mm curvature radius have been observed to be up to three times bigger than the growth rates on planar surfaces. Also, the grain size distribution on planar and on the corner surfaces as a function of the growth rate has been studied. Characterization with scanning electron microscopy (SEM) and Raman scattering spectroscopy (RSS) has been performed. © 1995.41112551259Bachmann, van Enckevort, (1992) Diamond Relat. Mater., 1, p. 1021Koidl, Klages, (1992) Diamond Relat. Mater., 1, p. 1065Buckley-Golder, Collins, (1992) Diamond Relat. Mater., 1, p. 1083Lux, Haubner, Renard, (1992) Diamond Relat. Mater., 1, p. 1035Lux, Haubner, (1991) Diamond and Diamond-like Films and Coatings, NATO-ASI Ser. B, Physics, 266, p. 579. , 5th edn., Plenum, New YorkClausing, Heatherly, Specht, More, (1991) Int. Conf. Proc. on New Diamond Science and Technology, p. 575. , MRS, Pittsburgh, PABruckner, Mantyla, (1993) Diamond Relat. Mater., 2, p. 373Jin, Graebner, Tiefl, Kammlott, (1993) Diamond Relat. Mater., 2, p. 1038Wild, Heres, Koidl, (1990) J. Appl. Phys., 68, p. 973Trava-Airoldi, Rodrigues, Fukui, Baranauskas, <title>Characterization of diamond films deposited by hot-filament CVD using CF4 as doping gas by Raman spectroscopy, FTIR spectroscopy, and atomic force microscopy</title> (1992) SPIE Proc. Diamond Optics V, 1759, p. 87. , 5th ednVan der Drift, (1967) Philips Res. Rep., 2, p. 26

    Graphene And Carbon Nanotube Nanocomposite For Gene Transfection

    No full text
    Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5 m2/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. © 2014 Elsevier B.V.391288298Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Functionalized carbon nanotubes: Biomedical applications (2012) Int. J. Nanomedicine, 7, pp. 5361-5374Zhou, X., Laroche, F., Lamers, G.E.M., Torraca, V., Voskamp, P., Lu, T., Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos (2012) Nano Res., 5, pp. 703-709Mastrobattista, E., Van Der Aa, M.A., Hennink, W.E., Crommelin, D.J., Artificial viruses: A nanotechnological approach to gene delivery (2006) Nat. Rev. Drug Discov., 5, pp. 115-121Lobo, A.O., Corat, M.A.F., Antunes, E.F., Ramos, S.C., Pacheco-Soares, C., Corat, E.J., Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma (2012) Mater. Sci. Eng. C-Mater., 32, pp. 648-652Putnam, D., Polymers for gene delivery across length scales (2006) Nat. Mater., 5, pp. 439-451Ryoo, S.R., Kim, Y.K., Kim, M.H., Min, D.H., Behaviors of NIH-3T3 fibroblasts on graphene and carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies (2010) ACS Nano., 4, pp. 6587-6598Misra, S.K., Kondaiah, P., Bhattacharya, S., Rao, C.N., Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins (2012) Small, 8, pp. 131-143Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353Kaya, C., Singh, I., Boccaccini, A.R., Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD) (2008) Adv. Eng. Mater., 10, pp. 131-138He, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., A Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis (2010) Adv. Funct. Mater., 20, pp. 453-459Jang, H., Kim, Y.K., Kwon, H.M., Yeo, W.S., Kim, D.E., Min, D.H., A graphene-based platform for the assay of duplex-DNA unwinding by helicase (2010) Angew. Chem. Intern. Ed., 49, pp. 5703-5707De La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Carbon nanotubes as photoacoustic molecular imaging agents in living mice (2008) Nat. Nanotechnol., 3, pp. 557-562Liu, Z., Robinson, J.T., Sun, X., Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs (2008) J. Am. Chem. Soc., 130, pp. 10876-10877Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Graphene-based antibacterial paper (2010) ACS Nano., 4, pp. 4317-4323Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J. Biol. Chem., 278, pp. 50212-50216De Andrade, L.R., Sandin Brito, A., De Souza Melero, A.M.G., Zanin, H., Jose Ceragioli, H., Baranauskas, V., Silva Cunha, K., Pierre Irazusta, S., Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test (2014) Ecotoxicol. Environ. Saf., 99, pp. 92-97Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol. Lett., 160, pp. 121-126Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays (2006) Nano Lett., 6, pp. 1261-1268Casey, A., Davoren, M., Herzog, E., Lyng, F.M., Byrne, H.J., Chambers, G., Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing (2007) Carbon, 45, pp. 34-40Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45, pp. 1425-1432Hurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue (2006) Carbon, 44, pp. 1028-1033Zanin, H., Peterlevitz, A.C., Ceragioli, H.J., Rodrigues, A.A., Belangero, W.D., Baranauskas, V., Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond (2012) Mater. Sci. Eng. C-Mate. Biol. Appl., 32, pp. 2340-2343Casey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis con.rms the interactions between single-walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (7), pp. 1425-1432Isobe, H., Tanaka, T., Maeda, R., Noiri, E., Solin, N., Yudasaka, M., Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal free carbon nanotubes aggregates (2006) Angew. Chem. Int. Ed. Engl., 45 (40), pp. 6676-6680Bhirde, A.A., Patel, S., Sousa, A.A., Patel, V., Molinolo, A.A., Ji, Y.M., Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice (2010) Nanomedicine - Uk., 5, pp. 1535-1546Foldvari, M., Bagonluri, M., Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues (2008) Nanomed-Nanotechnol., 4, pp. 183-200Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V., Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material (2004) J. Toxicol. Env. Heal A., 67, pp. 87-107Tejral, G., Panyala, N.R., Havel, J., Carbon nanotubes: Toxicological impact on human health and environment (2009) J. Appl. Biomed., 7, pp. 1-13Zhang, Y.B., Xu, Y., Li, Z.G., Chen, T., Lantz, S.M., Howard, P.C., Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells (2011) ACS Nano., 5, pp. 7020-7033Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells (2008) Environ. Health Perspect., 116, pp. 1211-1217Shvedova, A.A., Pietroiusti, A., Fadeel, B., Kagan, V.E., Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress (2012) Toxicol. Appl. Pharmacol., 261, pp. 121-133Yuan, J., Gao, H., Sui, J., Duan, H., Chen, W.N., Ching, C.B., Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2012) Toxicol. Sci., 126, pp. 149-161Yuan, J., Gao, H., Ching, C.B., Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2011) Toxicol. Lett., 207, pp. 213-221Murray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes (2009) Toxicology, 257, pp. 161-171Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J.P., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast (2005) Nano Lett., 5, pp. 2448-2464Yan, L., Zhao, F., Li, S., Hu, Z., Zhao, Y., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes (2011) Nanoscale, 3, pp. 362-382Yan, X.B., Gu, Y.H., Huang, D., Gan, L., Wu, L.X., Huang, L.H., Binding tendency with oligonucleotides and cell toxicity of cetyltrimethyl ammonium bromide-coated single-walled carbon nanotubes (2011) Trans. Nonferrous Met. Soc., 21, pp. 1085-1091Chan, W.C.W., Elucidating the Interactions of Nanomaterials with Biological Systems (2010) Nemb 2010: Proceedings of the Asme First Global Congress on Nanoengineering for Medicine and Biology - 2010, pp. 111-112Lam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77, pp. 126-134Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo (2005) Mol. Biosyst., 1, pp. 176-182Wei, H., Wei, J., Wu, Y., Liu, L., Fan, S., (2013) Jiang K, , High-Strength Composite Yarns Derived From Oxygen Plasma Modified Super-aligned Carbon Nanotube Arrays Nano Res 1-9Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors (2005) J. Am. Chem. Soc., 127, pp. 4388-4396Liu, Y., Wu, D.C., Zhang, W.D., Jiang, X., He, C.B., Chung, T.S., Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA (2005) Angew. Chem., 44, pp. 4782-4785Zangmeister, R.A., Maslar, J.E., Opdahl, A., Tarlov, M.J., Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces (2007) Langmuir, 23, pp. 6252-6256Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106, pp. 1105-1136Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., DNA-assisted dispersion and separation of carbon nanotubes (2003) Nat. Mater., 2, pp. 338-342Ju, S.Y., Doll, J., Sharma, I., Papadimitrakopoulos, F., Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide (2008) Nat. Nanotechnol., 3, pp. 356-362Sanchez-Pomales, G., Santiago-Rodriguez, L., Cabrera, C.R., DNA-functionalized carbon nanotubes for biosensing applications (2009) J. Nanosci Nanotechnol., 9, pp. 2175-2188Ghosh, S., Dutta, S., Gomes, E., Carroll, D., D'Agostino, R., Olson, J., Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes (2009) ACS Nano., 3, pp. 2667-2673Cheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.X., DNA and carbon nanotubes as medicine (2010) Adv. Drug Deliv. Rev., 62, pp. 633-649Firme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems (2010) Nanomed-Nanotechnol., 6, pp. 245-256Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 14265-14270Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 2050-2055Ge, C.C., Du, J.F., Zhao, L.N., Wang, L.M., Liu, Y., Li, D.H., Binding of blood proteins to carbon nanotubes reduces cytotoxicity (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 16968-16973Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557Shim, M., Kam, N.W.S., Chen, R.J., Li, Y.M., Dai, H.J., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition (2002) Nano Lett., 2, pp. 285-288Zhang, L., Zhao, G.C., Wei, X.W., Yang, Z.S., A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes (2005) Electroanal., 17, pp. 630-634Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J., Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design (2007) J. Am. Chem. Soc., 129, pp. 8438-8439Lobo, A.O., Zanin, H., Siqueira, I.A.W.B., Leite, N.C.S., Marciano, F.R., Corat, E.J., (2013) Mater. Sc. Eng. C-Mater. Biol. Appl., 33, pp. 4305-4312Grinet, M.A.V.M., Zanin, H., Granato, A.E.C., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds J. Mater. Chem. B., , http://dx.doi.org/10.1039/C3TB21525CFletcher, D.A., Mullins, D., Cell mechanics and the cytoskeleton (2010) Nature, 463, pp. 485-492Machado, C.M., Schenka, A., Vassallo, J., Tamashiro, W.M., Goncalves, E.M., Genari, S.C., Morphological characterization of a human glioma cell line (2005) Cancer Cell Int., 5, p. 13Izidoro, M.S.J., Varela, J.N., Alves, D.A., Pereira, R.F.C., Brocchi, M., Lancellotti, M., Effects of Salmonella enteritidis serovar typhimurium Infection in Adenocarcinomic human alveolar basal epithelial cells A549 in vitro: Bacteria induce apoptosis in adenocarcinomic cell (2012) J. Bacteriol. Parasitol., p. 3Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63Borenfreund, E., Puerner, J.A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90) (1985) J. Tissue Cult. Methods, 9, pp. 7-9Machado, D., Shishido, S.M., Queiroz, K.C., Oliveira, D.N., Faria, A.L., Catharino, R.R., Irradiated riboflavin diminishes the aggressiveness of melanoma in vitro and in vivo (2013) PLoS ONE, 8, p. 54269Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44, pp. 2202-2211Zanin, H., May, P.W., Hamanaka, M., Corat, E.J., Field emission from hybrid diamond-like carbon and carbon nanotube composite structures ACS Appl. Mater. Iinterfaces, 5 (23), pp. 12238-12243Zanin, H., Teofilo, R.F., Peterlevitz, A.C., Oliveira, U., De Paiva, J.C., Ceragioli, H.J., Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution (2013) J. Appl. Electrochem., 43, pp. 323-330Zanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications J (2013) Mater. Chem. B, 1, pp. 4947-4955Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., Nguyen, S.T., Chemically active reduced graphene oxide with tunable c/o ratios (2011) ACS Nano., 5, pp. 4380-4391Zhanga, Y., Zhaoa, J., Sunb, B., Chena, X., Lia, Q., Qiua, L., Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes (2012) Electrochim. Acta, 61, pp. 185-190Zanin, H., Saito, E., Ceragioli, H.J., Baranauskas, V., Corat, E.J., Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices (2014) Mater. Res. Bull., 49, pp. 487-493Ramalingam, P., Pusuluri, S.T., Periasamy, S., Veerabahu, R., Kulandaivel, J., Role of deoxy group on the high concentration of graphene in surfactant/water media (2013) Rsc Adv., 3, pp. 2369-2378De Nicola, M., Gattia, D.M., Bellucci, S., De Bellis, G., Micciulla, F., Pastore, R., Effect of different carbon nanotubes on cell viability and proliferation (2007) J. Phys-Condens Mater., p. 19Mwenifumbo, S., Shaffer, M.S., Stevens, M.M., Exploring cellular behaviour with multi-walled carbon nanotube constructs (2007) J. Mater. Chem., 17, pp. 1894-1902Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U., Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts (2007) Carbon, 45, pp. 2266-2272Zhang, D.W., Yi, C.Q., Zhang, J.C., Chen, Y., Yao, X.S., Yang, M.S., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, p. 18Macdiarmid, J.A., Mugridge, N.B., Weiss, J.C., Phillips, L., Burn, A.L., Paulin, R.P., Haasdyk, J.E., Brahmbhatt, H., Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics (2007) Cancer Cell, 11 (5), pp. 431-445Zhang, L., Lu, Z., Zhao, Q., Huang, J., Shen, H., Zhang, Z., Enhanced chemotherapy efficacy by sequential delivery of siRNA and Anticancer drugs using pei-grafted graphene oxide (2011) Small, 7, pp. 460-464Chang, Y., Yang, S.-T., Liu, J.-H., Dong, E., Wang, Y., Cao, A., Liu, Y., Wang, H., In vitro toxicity evaluation of graphene oxide on A549 cells (2011) Toxicol. Lett., 200, pp. 201-210Liao, K.-H., Lin, Y.-S., Macosko, C.W., Haynes, C.L., Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts (2011) ACS Appl. Mater. Interfaces, 3, pp. 2607-261

    Friction Coefficient Measurements By Lfm On Dlc Films As Function Of Sputtering Deposition Parameters

    No full text
    Diamond-like carbon (DLC) coatings are widely used as protective overcoats on space junctions, magnetic media and magnetic head sliders in hard disk-drive systems, etc. In the present work, the friction coefficient of DLC films was investigated by lateral force microscopy (LFM) as a function of sputtering deposition parameters. The lateral force acts on the pyramidal tip attached to the end of the cantilever, due to friction or viscous forces, resulting in cantilever measurable torsion and deflection, related to the friction's magnitude. The relationship among data from friction coefficient distribution on DLC films surface with flow of precursor gases, surface composition, morphology structure, hardness and elastic module parameters was evaluated. Characterization techniques such as Raman scattering spectroscopy (RSS), X-ray photoelectron spectroscopy (XPS) and nanoindentation were used. The results have showed good agreement with the literature for DLC tribological parameters. © 2002 Elsevier Science B.V. All rights reserved.113-611351138Cunningham, J.M., Marirrodriga, C.G., (1995) Proceedings of the Sixth European Space Mechanisms and Tribology Symposium, p. 374. , Technopark, Zurich, Switzerland, ESA SPBriscoe, H.M., (1990) Tribol. Int, 23 (2), p. 67Spalvins, T., (1973) ASLE Trans, 1, p. 17Lifshitz, Y., (1999) Diamond Relat. Mater, 8, p. 1659Santos, L.V., Trava-Airoldi, V.J., Iha, K., Corat, E.J., Salvador, M.C., (2001) Diamond Relat. Mater, 10, p. 1049Maillat, M., Hintermann, H.E., (1990) Proceedings of the Fourth European on Space Mechanisms and Tribology Symposium, p. 299. , Canes, France (20-22 Sep 1989), ESA SPGrill, A., Patel, V., (1993) Diamond Relat. Mater, 2, p. 597Mogne, T.L., Donnet, C., Martin, J.M., Tonck, A., Millard, J.N., (1994) Vacuum Sci. Technol, 12 A (4), p. 1998Liu, E., Blanpain, B., Shia, X., Celis, J.-P., Tan, H.-S., Tay, B.-K., Cheah, L.-K., Ross, J.R., (1998) Surf. Coat. Technol, 106, p. 72Donnet, C., Belin, M., Auge, J.C., Martin, J.M., Grill, A., Patel, V., (1994) Surf. Coat. Technol, 68-69, p. 626Grill, A., (1999) J. Res. Dev. IBM-plasma Process, 1-2, p. 43Erlandsson, R., Hadziioannou, G., Mate, C.M., McClelland, G.M., Chiangs, S.J., (1988) Chem. Phys, 89 (8), p. 5190Prioli, R., Reigada, D.C., Freire, F.L., (1999) Appl. Phys. Lett, 75 (9), p. 1317Miyake, S., Kaneko, R., (1992) Thin Solids Films, 212, p. 256Mar-tines, E., Andujur, J.L., Polo, M.C., Esteve, J., Robertson, J., Milne, W.I., (2001) Diamond Relat. Mater, 10, pp. 145-152Marti, O., Colchero, J., Mlynek, J., (1990) Nanotechnol, 1, p. 141Meyer, E., Overney, R., Brodbeck, D., Howald, L., Ltithi, R., Frommer, J., Gtintherodt, H.J., (1992) Phys. Rev. Lett, 69 (12), p. 1777Neumeister, J.M., Ducker, W.A., (1994) Sci. Instrum, 68 (8), p. 2527Hu, J., Xiao, X.-D., Ogletree, D.F., Salmerom, M., (1995) Surf. Sci, 344, pp. 221-23

    Determination Of Gas Phase Reactive Species By Mass Spectrometry In Chlorine Assisted Hot-filament Chemical Vapor Deposition Of Diamond

    No full text
    In this paper we studied the CVD diamond growth from CCl4 mixtures. We observed by mass spectrometry that CCl4 completely dissociates and converts into hydrocarbons and HCl. The quartz microprobe experiments confirm dissociation and shows that the gas phase is completely reacted to its equilibrium for distances larger than 4mm from the gas inlet. The observation of no other chloro-carbon species indicates a fast and short range conversion that probably prevents the participation of chloro-carbon radicals in the growth process. The observation of other chlorinated species in the range from 2 to 4mm may explain the annular regions observed in the growth experiments with gas inlet close to the substrate. Growth experiments have been analysed by Scanning Electron Microscopy (SEM) and Raman Spectroscopy.274142145Spear, K.E., Dismuskes, J.P., (1994) Synthetic Diamond: Emerging CVD Science and Technology, , John Wiley, New YorkCorat, E.J., Trava-Airoldi, V.J., Leite, N.F., Nono, M.C.A., Baranauskas, V., (1997) J. Mater. Sci., 32, p. 941Bai, B.J., Chu, C.J., Patterson, D.E., Hauge, R.H., Margrave, J.L., (1993) J. Mater. Res., 8, p. 233Pan, C., Margrave, J.L., Hauge, R.H., (1994) Mat. Res. Soc. Symp. Proc. Vol. 349, Novel Forms of Carbon II, 349, p. 427. , Ed. C.L. Renschler, D.M. Cox, J.J. Pouch and Y. Achiba, Materials Research Society, San Francisco, CAFox, C., McMaster, M.C., Hsu, W.L., Kelly, M.A., Hagstrom, S.B., (1995) Appl. Phys. Lett., 67, p. 2379Mendes De Barros, R.C., Corat, E.J., Trava-Airoldi, V.J., Ferreira, N.G., Leite, N.F., Iha, K., (1997) Diamond Relat. Mater., 6, p. 49
    corecore