952 research outputs found

    Building Blocks in Hierarchical Clustering Scenarios and their Connection with Damped Lyα\alpha Systems

    Get PDF
    We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of Damped Lyman-α\alpha systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of today normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z=0z=0 and then followed back in time. Random line-of-sights (LOS) are drawn through these structures in order to mimic Damped Lyman α\alpha systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L<0.5L∗L <0.5 L^* and virial circular velocity of 100−250km/sec100-250 {\rm km/sec} could be the associated DLA galaxies. For these systems we detected a trend for to increase with redshift.(Abridged)Comment: 15 pages, 11 Postscript figures. Accepted to MNRA

    Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to MNRA

    Electrical Control of Linear Dichroism in Black Phosphorus from the Visible to Mid-Infrared

    Get PDF
    The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic control of light propagation by an applied potential. While many materials have been shown to exhibit electrically tunable permittivity and dispersion, including transparent conducting oxides (TCOs) and III-V semiconductors and quantum wells, these materials are all optically isotropic in the propagation plane. In this work, we report the first known example of electrically tunable linear dichroism, observed here in few-layer black phosphorus (BP), which is a promising candidate for multi-functional, broadband, tunable photonic elements. We measure active modulation of the linear dichroism from the mid-infrared to visible frequency range, which is driven by anisotropic quantum-confined Stark and Burstein-Moss effects, and field-induced forbidden-to-allowed optical transitions. Moreover, we observe high BP absorption modulation strengths, approaching unity for certain thicknesses and photon energies

    Bulge formation from SSCs in a responding cuspy dark matter halo

    Get PDF
    We simulate the bulge formation in very late-type dwarf galaxies from circumnuclear super star clusters (SSCs) moving in a responding cuspy dark matter halo (DMH). The simulations show that (1) the response of DMH to sinking of SSCs is detectable only in the region interior to about 200 pc. The mean logarithmic slope of the responding DM density profile over that area displays two different phases: the very early descent followed by ascent till approaching to 1.2 at the age of 2 Gyrs. (2) the detectable feedbacks of the DMH response on the bulge formation turned out to be very small, in the sense that the formed bulges and their paired nuclear cusps in the fixed and the responding DMH are basically the same, both are consistent with HSTHST observations. (3) the yielded mass correlation of bulges to their nuclear (stellar) cusps and the time evolution of cusps' mass are accordance with recent findings on relevant relations. In combination with the consistent effective radii of nuclear cusps with observed quantities of nuclear clusters, we believe that the bulge formation scenario that we proposed could be a very promising mechanism to form nuclear clusters.Comment: 27 pages, 11 figures, accepted for publication in Ap

    A fitting formula for the merger timescale of galaxies in hierarchical clustering

    Full text link
    We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, \ln (m_pri/m_sat). The two alternative forms \ln (1+m_pri/m_sat) and 1/2\ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since \ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter \epsilon is much weaker than the widely adopted power-law \epsilon^{0.78}, whereas 0.94*{\epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.Comment: 16 pages, 14 figures, accepted for publication in ApJ, minor changes in the last few sentences of the discussio
    • 

    corecore