15 research outputs found

    Mapping and classifying large deformation from digital imagery: application to analogue models of lithosphere deformation

    Get PDF
    Particle image velocimetry (PIV), a method based on image cross-correlation, is widely used for obtaining velocity fields from time-series of images of deforming objects. Rather than instantaneous velocities, we are interested in reconstructing cumulative deformation, and use PIV-derived incremental displacements for this purpose. Our focus is on analogue models of tectonic processes, which can accumulate large deformation. Importantly, PIV provides incremental displacements during analogue model evolution in a spatial reference (Eulerian) frame, without the need for explicit markers in a model. We integrate the displacements in a material reference (Lagrangian) frame, such that displacements can be integrated to track the spatial accumulative deformation field as a function of time. To describe cumulative, finite deformation, various strain tensors have been developed, and we discuss what strain measure best describes large shape changes, as standard infinitesimal strain tensors no longer apply for large deformation. PIV or comparable techniques have become a common method to determine strain in analogue models. However, the qualitative interpretation of observed strain has remained problematic for complex settings. Hence, PIV-derived displacements have not been fully exploited before, as methods to qualitatively characterize cumulative, large strain have been lacking. Notably, in tectonic settings, different types of deformation—extension, shortening, strike-slip—can be superimposed. We demonstrate that when shape changes are described in terms of Hencky strains, a logarithmic strain measure, finite deformation can be qualitatively described based on the relative magnitude of the two principal Hencky strains. Thereby, our method introduces a physically meaningful classification of large 2-D strains. We show that our strain type classification method allows for accurate mapping of tectonic structures in analogue models of lithospheric deformation, and complements visual inspection of fault geometries. Our method can easily discern complex strike-slip shear zones, thrust faults and extensional structures and its evolution in time. Our newly developed software to compute deformation is freely available and can be used to post-process incremental displacements from PIV or similar autocorrelation methods

    Classifying large strains from digital imagery: application to analogue models of lithosphere deformation

    Get PDF
    We are interested in reconstructing the time evolution of 2D plane deformation of analogue models of tectonic processes. Under relevant forcings, these models develop internal deformation, such as faults, and broader zones of deformation. We use Particle Image Velocimetry (PIV) to derive incremental displacements from top-view images that we use in subsequent steps to calculate the shape changes that come with large deformation. Because PIV describes displacement in a spatial reference, and material moves through the area in view, displacements at any given time refer to fixed locations in space, and not to specific material points. By reconstructing the path of material, we can follow small regions of material while they translate, rotate and change shape. To aid the qualitative interpretation of this deformation, we have developed a novel method that can qualitatively describe shape changes coming from extensional, shortening and horizontal shearing (strike-slip) deformation or combinations of these. This method is based on a logarithmic measure of stretch and results agree well with the visual interpretation of structures that we observe in our models. Thus, we provide tools with which the evolution of 2D tectonic deformation can be interpreted in a physically meaningful manner, but our method may be useful outside the realm of tectonics. Our software to compute deformation is freely available and can be used to post-process incremental displacements from PIV or similar autocorrelation methods

    Mapping and classifying large deformation from digital imagery: application to analogue models of lithosphere deformation

    No full text
    Particle image velocimetry (PIV), a method based on image cross-correlation, is widely used for obtaining velocity fields from time-series of images of deforming objects. Rather than instantaneous velocities, we are interested in reconstructing cumulative deformation, and use PIV-derived incremental displacements for this purpose. Our focus is on analogue models of tectonic processes, which can accumulate large deformation. Importantly, PIV provides incremental displacements during analogue model evolution in a spatial reference (Eulerian) frame, without the need for explicit markers in a model. We integrate the displacements in a material reference (Lagrangian) frame, such that displacements can be integrated to track the spatial accumulative deformation field as a function of time. To describe cumulative, finite deformation, various strain tensors have been developed, and we discuss what strain measure best describes large shape changes, as standard infinitesimal strain tensors no longer apply for large deformation. PIV or comparable techniques have become a common method to determine strain in analogue models. However, the qualitative interpretation of observed strain has remained problematic for complex settings. Hence, PIV-derived displacements have not been fully exploited before, as methods to qualitatively characterize cumulative, large strain have been lacking. Notably, in tectonic settings, different types of deformation—extension, shortening, strike-slip—can be superimposed. We demonstrate that when shape changes are described in terms of Hencky strains, a logarithmic strain measure, finite deformation can be qualitatively described based on the relative magnitude of the two principal Hencky strains. Thereby, our method introduces a physically meaningful classification of large 2-D strains. We show that our strain type classification method allows for accurate mapping of tectonic structures in analogue models of lithospheric deformation, and complements visual inspection of fault geometries. Our method can easily discern complex strike-slip shear zones, thrust faults and extensional structures and its evolution in time. Our newly developed software to compute deformation is freely available and can be used to post-process incremental displacements from PIV or similar autocorrelation methods

    Classifying large strains from digital imagery: application to analogue models of lithosphere deformation

    No full text
    We are interested in reconstructing the time evolution of 2D plane deformation of analogue models of tectonic processes. Under relevant forcings, these models develop internal deformation, such as faults, and broader zones of deformation. We use Particle Image Velocimetry (PIV) to derive incremental displacements from top-view images that we use in subsequent steps to calculate the shape changes that come with large deformation. Because PIV describes displacement in a spatial reference, and material moves through the area in view, displacements at any given time refer to fixed locations in space, and not to specific material points. By reconstructing the path of material, we can follow small regions of material while they translate, rotate and change shape. To aid the qualitative interpretation of this deformation, we have developed a novel method that can qualitatively describe shape changes coming from extensional, shortening and horizontal shearing (strike-slip) deformation or combinations of these. This method is based on a logarithmic measure of stretch and results agree well with the visual interpretation of structures that we observe in our models. Thus, we provide tools with which the evolution of 2D tectonic deformation can be interpreted in a physically meaningful manner, but our method may be useful outside the realm of tectonics. Our software to compute deformation is freely available and can be used to post-process incremental displacements from PIV or similar autocorrelation methods

    Study of Hydroplaning Risk on Rolling and Sliding Passenger Car

    Get PDF
    Hydroplaning speed is known to vary over a range of tire slipping conditions from free rolling to completely skidding. An attempt has been made to simulate two extreme conditions of hydroplaning i.e. when the tire is completely rolling (0% slip) and a completely locked tire (100% slip). ASTM standard smooth tire moving over the plane pavement surface is considered in the model. The analyses showed that the hydroplaning risk associated with the locked tire is more than the rolling tire. The modeling was carried out using the commercial finite element software package, ABAQUS.Delft University of Technolog

    American and European mix design approaches combined: Use of NCHRP performance indicators to Analyze Comit\ue9 Europ\ue9en de normalisation test results

    No full text
    This paper describes a project that is part of NL-LAB, a larger, long-term program at Delft University of Technology, Netherlands, which aims to establish the predictive capacity of the current European functional tests for Dutch asphalt concrete (AC) mixtures. In this NL-LAB program, the functional characteristics of resistance to rutting (EN 12697-25), fatigue (EN 12679-24), stiffness (EN 12697-26), and moisture sensitivity (EN 12697-12 and EN 12697-23) are determined for specimens that art-(a) mixed and compacted in the lab, (b) mixed in the plant and compacted in the lab, and (c) mixed in the plant and compacted in the road. Eventually, these tests will provide insight into the effect of mixing and compaction on the functional characteristics. The project described in this paper focused on the indirect tensile strength (ITS) and the Iriaxial cyclic compression lest for two AC mixes. The properties found for all three stages of preparation were analyzed with the use of formalistic expressions from the NCHRP Design Guide 1-37A, Level 2, for the estimation of performance indicators. This project aimed to see if these relations remained valid for the Comit\ue9 Europ\ue9en de Normalisation tests, especially for mixes with high recycled asphalt pavement content. In the Netherlands, 50% reclaimed asphalt pavement is standard. It was found that the NCHRP Design Guide 1-37A expressions lit the Comit\ue9 Europ\ue9en de Normalisation test data quite well for the reclaimed asphalt pavement that contained mixes, especially for the ITS. Currently, another two construction projects are being sampled, and the results will be used to validate and improve the relations
    corecore