15 research outputs found

    The BAFFling effects of rituximab in lupus: danger ahead?

    No full text
    Suboptimal trial design and concurrent therapies are thought to account for the unexpected failure of two clinical trials of rituximab in patients with systemic lupus erythematosus (SLE). However, in this Opinion article we propose an alternative explanation: that rituximab can trigger a sequence of events that exacerbates disease in some patients with SLE. Post-rituximab SLE flares that are characterized by high levels of antibodies to double-stranded DNA are associated with elevated circulating BAFF (B-cell-activating factor, also known as TNF ligand superfamily member 13B or BLyS) levels, and a high proportion of plasmablasts within the B-cell pool. BAFF not only perpetuates autoreactive B cells (including plasmablasts), particularly when B-cell numbers are low, but also stimulates T follicular helper (TFH) cells. Moreover, plasmablasts and TFH cells promote each others' formation. Thus, repeated rituximab infusions can result in a feedback loop characterized by ever-rising BAFF levels, surges in autoantibody production and worsening of disease. We argue that B-cell depletion should be swiftly followed by BAFF inhibition in patients with SLE

    BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications

    No full text
    The purpose of these studies was to develop and characterize B-cell maturation antigen (BCMA)-specific peptide-encapsulated nanoparticle formulations to efficiently evoke BCMA-specific CD8+ cytotoxic T lymphocytes (CTL) with poly-functional immune activities against multiple myeloma (MM). Heteroclitic BCMA72-80 [YLMFLLRKI] peptide-encapsulated liposome or poly(lactic-co-glycolic acid) (PLGA) nanoparticles displayed uniform size distribution and increased peptide delivery to human dendritic cells, which enhanced induction of BCMA-specific CTL. Distinct from liposome-based nanoparticles, PLGA-based nanoparticles demonstrated a gradual increase in peptide uptake by antigen-presenting cells, and induced BCMA-specific CTL with higher anti-tumor activities (CD107a degranulation, CTL proliferation, and IFN-Îł/IL-2/TNF-α production) against primary CD138+ tumor cells and MM cell lines. The improved functional activities were associated with increased Tetramer+/CD45RO+ memory CTL, CD28 upregulation on Tetramer+ CTL, and longer maintenance of central memory (CCR7+ CD45RO+) CTL, with the highest anti-MM activity and less differentiation into effector memory (CCR7- CD45RO+) CTL. These results provide the framework for therapeutic application of PLGA-based BCMA immunogenic peptide delivery system, rather than free peptide, to enhance the induction of BCMA-specific CTL with poly-functional Th1-specific anti-MM activities. These results demonstrate the potential clinical utility of PLGA nanotechnology-based cancer vaccine to enhance BCMA-targeted immunotherapy against myeloma
    corecore