1,624 research outputs found
Thermo-Rotational Instability in Plasma Disks Around Compact Objects
Differentially rotating plasma disks, around compact objects, that are
imbedded in a ``seed'' magnetic field are shown to develop vertically localized
ballooning modes that are driven by the combined radial gradient of the
rotation frequency and vertical gradients of the plasma density and
temperature. When the electron mean free path is shorter than the disk height
and the relevant thermal conductivity can be neglected, the vertical particle
flows produced by of these modes have the effect to drive the density and
temperature profiles toward the ``adiabatic condition'' where
. Here is the plasma temperature and
the particle density. The faster growth rates correspond to steeper
temperature profiles such as those produced by an internal
(e.g., viscous) heating process. In the end, ballooning modes excited for
various values of can lead to the evolution of the disk into a
different current carrying configuration such as a sequence of plasma rings
Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry
The dissipation of energy flux in blazar jets plays a key role in the
acceleration of relativistic particles. Two possibilities are commonly
considered for the dissipation processes, magnetic reconnection -- possibly
triggered by instabilities in magnetically-dominated jets -- , or shocks -- for
weakly magnetized flows. We consider the polarimetric features expected for the
two scenarios analyzing the results of state-of-the-art simulations. For the
magnetic reconnection scenario we conclude, using results from global
relativistic MHD simulations, that the emission likely occurs in turbulent
regions with unstructured magnetic fields, although the simulations do not
allow us to draw firm conclusions. On the other hand, with local
particle-in-cell simulations we show that, for shocks with a magnetic field
geometry suitable for particle acceleration, the self-generated magnetic field
at the shock front is predominantly orthogonal to the shock normal and becomes
quasi-parallel downstream. Based on this result we develop a simplified model
to calculate the frequency-dependent degree of polarization, assuming that
high-energy particles are injected at the shock and cool downstream. We apply
our results to HBLs, blazars with the maximum of their synchrotron output at
UV-soft X-ray energies. While in the optical band the predicted degree of
polarization is low, in the X-ray emission it can ideally reach 50\%,
especially during active/flaring states. The comparison between measurements in
the optical and in the X-ray band made during active states (feasible with the
planned {\it IXPE} satellite) are expected to provide valuable constraints on
the dissipation and acceleration processes.Comment: 9 pages, 6 figures, accepted for publication by MNRA
Closure Relations for Electron-Positron Pair-Signatures in Gamma-Ray Bursts
We present recipes to diagnose the fireball of gamma-ray bursts (GRBs) by
combining observations of electron-positron pair-signatures (the
pair-annihilation line and the cutoff energy due to the pair-creation process).
Our recipes are largely model-independent and extract information even from the
non-detection of either pair-signature. We evaluate physical quantities such as
the Lorentz factor, optical depth and pair-to-baryon ratio, only from the
observable quantities. In particular, we can test whether the prompt emission
of GRBs comes from the pair/baryonic photosphere or not. The future-coming
Gamma-Ray Large Area Space Telescope (GLAST) satellite will provide us with
good chances to use our recipes by detecting or non-detecting pair-signatures.Comment: 7 pages, 4 figures, accepted for publication in ApJ, with extended
discussions. Conclusions unchange
Time dependent numerical model for the emission of radiation from relativistic plasma
We describe a numerical model constructed for the study of the emission of
radiation from relativistic plasma under conditions characteristic, e.g., to
gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves
self consistently the kinetic equations for e^\pm and photons, describing
cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair
production and annihilation, including the evolution of high energy
electromagnetic cascades. The code allows calculations over a wide range of
particle energies, spanning more than 15 orders of magnitude in energy and time
scales. Our unique algorithm, which enables to follow the particle
distributions over a wide energy range, allows to accurately derive spectra at
high energies, >100 \TeV. We present the kinetic equations that are being
solved, detailed description of the equations describing the various physical
processes, the solution method, and several examples of numerical results.
Excellent agreement with analytical results of the synchrotron-SSC model is
found for parameter space regions in which this approximation is valid, and
several examples are presented of calculations for parameter space regions
where analytic results are not available.Comment: Minor changes; References added, discussion on observational status
added. Accepted for publication in Ap.
Iron K Lines from Gamma Ray Bursts
We present models for reprocessing of an intense flux of X-rays and gamma
rays expected in the vicinity of gamma ray burst sources. We consider the
transfer and reprocessing of the energetic photons into observable features in
the X-ray band, notably the K lines of iron. Our models are based on the
assumption that the gas is sufficiently dense to allow the microphysical
processes to be in a steady state, thus allowing efficient line emission with
modest reprocessing mass and elemental abundances ranging from solar to
moderately enriched. We show that the reprocessing is enhanced by
down-Comptonization of photons whose energy would otherwise be too high to
absorb on iron, and that pair production can have an effect on enhancing the
line production. Both "distant" reprocessors such as supernova or wind remnants
and "nearby" reprocessors such as outer stellar envelopes can reproduce the
observed line fluxes with Fe abundances 30-100 times above solar, depending on
the incidence angle. The high incidence angles required arise naturally only in
nearby models, which for plausible values can reach Fe line to continuum ratios
close to the reported values.Comment: 37 pages, 10 figures. Ap. J in pres
Witnessing the gradual slow-down of powerful extragalactic jets: The X-ray -- optical -- radio connection
A puzzling feature of the {\it Chandra}--detected quasar jets is that their
X-ray emission decreases faster along the jet than their radio emission,
resulting to an outward increasing radio to X-ray ratio. In some sources this
behavior is so extreme that the radio emission peak is located clearly
downstream of that of the X-rays. This is a rather unanticipated behavior given
that the inverse
Compton nature of the X-rays and the synchrotron radio emission are
attributed to roughly the same electrons of the jet's non-thermal electron
distribution. In this note we show that this morphological behavior can result
from the gradual deceleration of a relativistic flow and that the offsets in
peak emission at different wavelengths carry the imprint of this deceleration.
This notion is consistent with another recent finding, namely that the jets
feeding the terminal hot spots of powerful radio galaxies and quasars are still
relativistic with Lorentz factors . The picture of the
kinematics of powerful jets emerging from these considerations is that they
remain relativistic as they gradually decelerate from Kpc scales to the hot
spots, where, in a final collision with the intergalactic medium, they
slow-down rapidly to the subrelativistic velocities of the hot spot advance
speed.Comment: Submitted in ApJ Letters on Jan. 14, 200
Anatomy and embryology of tracheo-esophageal fistula
Anomalies in tracheo-esophageal development result in a spectrum of congenital malformations ranging from, most commonly, esophageal atresia with or without trachea-esophageal fistula (EA+/-TEF) to esophageal web, duplication, stricture, tracheomalacia and tracheal agenesis. Despite the relative frequency of EA, however, the underlying etiology remains unknown and is likely due to a combination of genetic, epigenetic and environmental factors. In recent years, animal models have dramatically increased our understanding of the molecular and morphological processes involved in normal esophageal development during the key stages of anterior-posterior regionalization, dorsal-ventral patterning and morphogenic separation. Moreover, the use of animal models in conjunction with increasingly advanced techniques such as genomic sequencing, sophisticated live imaging studies and organoid models have more recently cast light on potential mechanisms involved in EA pathogenesis. This article aims to unravel some of the mysteries behind the anatomy and embryology of EA whilst providing insights into future directions for research
- …