372 research outputs found

    One-Carbon Metabolism and Alzheimer’s Disease: Focus on Epigenetics

    Get PDF
    Alzheimer’s disease (AD) represents the most common form of dementia in the elderly, characterized by progressive loss of memory and cognitive capacity severe enough to interfere with daily functioning and the quality of life. Rare, fully penetrant mutations in three genes (APP, PSEN1 and PSEN2) are responsible for familial forms of the disease. However, more than 90% of AD is sporadic, likely resulting from complex interactions between genetic and environmental factors. Increasing evidence supports a role for epigenetic modifications in AD pathogenesis. Folate metabolism, also known as one-carbon metabolism, is required for the production of S-adenosylmethionine (SAM), which is the major DNA methylating agent. AD individuals are characterized by decreased plasma folate values, as well as increased plasma homocysteine (Hcy) levels, and there is indication of impaired SAM levels in AD brains. Polymorphisms of genes participating in one-carbon metabolism have been associated with AD risk and/or with increased Hcy levels in AD individuals. Studies in rodents suggest that early life exposure to neurotoxicants or dietary restriction of folate and other B vitamins result in epigenetic modifications of AD related genes in the animal brains. Similarly, studies performed on human neuronal cell cultures revealed that folate and other B vitamins deprivation from the media resulted in epigenetic modification of the PSEN1 gene. There is also evidence of epigenetic modifications in the DNA extracted from blood and brains of AD subjects. Here I review one-carbon metabolism in AD, with emphasis on possible epigenetic consequences

    The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects

    Get PDF
    Almost 15 years ago it was hypothesized that polymorphisms of genes encoding enzymes involved in folate metabolism could lead to aberrant methylation of peri-centromeric regions of chromosome 21, favoring its abnormal segregation during maternal meiosis. Subsequently, more than 50 small case-control studies investigated whether or not maternal polymorphisms of folate pathway genes could be risk factors for the birth of a child with Down syndrome (DS), yielding conflicting and inconclusive results. However, recent meta-analyses of those studies suggest that at least three of those polymorphisms, namely MTHFR 677C>T, MTRR 66A>G, and RFC1 80G>A, are likely to act as maternal risk factors for the birth of a child with trisomy 21, revealing also complex gene-nutrient interactions. A large-cohort study also revealed that lack of maternal folic acid supplementation at peri-conception resulted in increased risk for a DS birth due to errors occurred at maternal meiosis II in the aging oocyte, and it was shown that the methylation status of chromosome 21 peri-centromeric regions could favor recombination errors during meiosis leading to its malsegregation. In this regard, two recent case-control studies revealed association of maternal polymorphisms or haplotypes of the DNMT3B gene, coding for an enzyme required for the regulation of DNA methylation at centromeric and peri-centromeric regions of human chromosomes, with risk of having a birth with DS. Furthermore, congenital heart defects (CHD) are found in almost a half of DS births, and increasing evidence points to a possible contribution of lack of folic acid supplementation at peri-conception, maternal polymorphisms of folate pathway genes, and resulting epigenetic modifications of several genes, at the basis of their occurrence. This review summarizes available case-control studies and literature meta-analyses in order to provide a critical and up to date overview of what we currently know in this field

    An Overview of DNA Repair in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is an adult onset neurodegenerative disorder characterised by the degeneration of cortical and spinal cord motor neurons, resulting in progressive muscular weakness and death. Increasing evidence supports mitochondrial dysfunction and oxidative DNA damage in ALS motor neurons. Several DNA repair enzymes are activated following DNA damage to restore genome integrity, and impairments in DNA repair capabilities could contribute to motor neuron degeneration. After a brief description of the evidence of DNA damage in ALS, this paper focuses on the available data on DNA repair activity in ALS neuronal tissue and disease animal models. Moreover, biochemical and genetic data on DNA repair in ALS are discussed in light of similar findings in other neurodegenerative diseases

    Genetics and Epigenetics of Parkinson's Disease

    Get PDF
    In 1997 a mutation in the a-synuclein (SNCA) gene was associated with familial autosomal dominant Parkinson's disease (PD). Since then, several loci (PARK1-15) and genes have been linked to familial forms of the disease. There is now sufficient evidence that six of the so far identified genes at PARK loci (a-synuclein, leucine-rich repeat kinase 2, parkin, PTEN-induced putative kinase 1, DJ-1, and ATP13A2) cause inherited forms of typical PD or parkinsonian syndromes. Other genes at non-PARK loci (MAPT, SCA1, SCA2, spatacsin, POLG1) cause syndromes with parkinsonism as one of the symptoms. The majority of PD cases are however sporadic “idiopathic” forms, and the recent application of genome-wide screening revealed almost 20 genes that might contribute to disease risk. In addition, increasing evidence suggests that epigenetic mechanisms, such as DNA methylation, histone modifications, and small RNA-mediated mechanisms, could regulate the expression of PD-related genes

    Genetics, Cytogenetics, and Epigenetics of Colorectal Cancer

    Get PDF
    Most of the colorectal cancer (CRC) cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability), CIN (chromosomal instability), and CIMP (CpG island methylator phenotype). CIN occurs in 80–85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q) as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype

    Polymorphisms in folate-metabolizing genes, chromosome damage, and risk of Down syndrome in Italian women: identification of key factors using artificial neural networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in mothers of Down syndrome individuals (MDS) point to a role for polymorphisms in folate metabolic genes in increasing chromosome damage and maternal risk for a Down syndrome (DS) pregnancy, suggesting complex gene-gene interactions. This study aimed to analyze a dataset of genetic and cytogenetic data in an Italian group of MDS and mothers of healthy children (control mothers) to assess the predictive capacity of artificial neural networks assembled in TWIST system in distinguish consistently these two different conditions and to identify the variables expressing the maximal amount of relevant information to the condition of being mother of a DS child.</p> <p>The dataset consisted of the following variables: the frequency of chromosome damage in peripheral lymphocytes (BNMN frequency) and the genotype for 7 common polymorphisms in folate metabolic genes (<it>MTHFR </it>677C>T and 1298A>C, <it>MTRR </it>66A>G, <it>MTR </it>2756A>G, <it>RFC1 </it>80G>A and <it>TYMS </it>28bp repeats and 1494 6bp deletion). Data were analysed using TWIST system in combination with supervised artificial neural networks, and a semantic connectivity map.</p> <p>Results</p> <p>TWIST system selected 6 variables (BNMN frequency, <it>MTHFR </it>677TT, <it>RFC1 </it>80AA, <it>TYMS </it>1494 6bp +/+, <it>TYMS </it>28bp 3R/3R and <it>MTR </it>2756AA genotypes) that were subsequently used to discriminate between MDS and control mothers with 90% accuracy. The semantic connectivity map provided important information on the complex biological connections between the studied variables and the two conditions (being MDS or control mother).</p> <p>Conclusions</p> <p>Overall, the study suggests a link between polymorphisms in folate metabolic genes and DS risk in Italian women.</p

    Artificial Neural Networks Link One-Carbon Metabolism to Gene-Promoter Methylation in Alzheimer's Disease

    Get PDF
    Background: There is increasing interest in DNA methylation studies in Alzheimer's disease (AD), but little is still known concerning the relationship between gene-promoter methylation and circulating biomarkers of one-carbon metabolism in patients. Objective: To detect the connections among circulating folate, homocysteine (hcy) and vitamin B12 levels and promoter methylation levels of PSEN1, BACE1, DNMT1, DNMT3A, DNMT3B, and MTHFR genes in blood DNA. Methods: We applied a data mining system called Auto Contractive Map to an existing database of 100 AD and 100 control individuals. Results: Low vitamin B12 was linked to the AD condition, to low folates, and to high hcy. Low PSEN1 methylation was linked to low folate levels as well as to low promoter methylation of BACE1 and DNMTs genes. Low hcy was linked to controls, to high folates and vitamin B12, as well as to high methylation levels of most of the studied genes. Conclusions: The present pilot study suggests that promoter methylation levels of the studied genes are linked to circulating levels of folates, hcy, and vitamin B12

    Mitoepigenetics and Neurodegenerative Diseases

    Get PDF
    Mitochondrial impairment and increased oxidative stress are common features in neurodegenerative disorders, leading researchers to speculate that epigenetic changes in the mitochondrial DNA (mitoepigenetics) could contribute to neurodegeneration. The few studies performed so far to address this issue revealed impaired methylation levels of the mitochondrial regulatory region (D-loop region) in both animal models, postmortem brain regions, or circulating blood cells of patients with Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Those studies also revealed that mtDNA D-loop methylation levels are subjected to a dynamic regulation within the progression of the neurodegenerative process, could be affected by certain neurodegenerative disease-causative mutations, and are inversely correlated with the mtDNA copy number. The methylation levels of other mtDNA regions than the D-loop have been scarcely investigated in human specimens from patients with neurodegenerative disorders or in animal models of the disease, and evidence of impaired methylation levels is often limited to a single study, making it difficult to clarify their correlation with mitochondrial dynamics and gene expression levels in these disorders. Overall, the preliminary results of the studies performed so far are encouraging making mitoepigenetics a timely and attractive field of investigation, but additional research is warranted to clarify the connections among epigenetic changes occurring in the mitochondrial genome, mitochondrial DNA dynamics and gene expression, and the neurodegenerative process

    Increase in Mitochondrial D-Loop Region Methylation Levels in Mild Cognitive Impairment Individuals

    Get PDF
    Methylation levels of the mitochondrial displacement loop (D-loop) region have been reported to be altered in the brain and blood of Alzheimer's disease (AD) patients. Moreover, a dynamic D-loop methylation pattern was observed in the brain of transgenic AD mice along with disease progression. However, investigations on the blood cells of AD patients in the prodromal phases of the disease have not been performed so far. The aim of this study was to analyze D-loop methylation levels by means of the MS-HRM technique in the peripheral blood cells of 14 mild cognitive impairment (MCI) patients, 18 early stage AD patients, 70 advanced stage AD patients, and 105 healthy control subjects. We found higher D-loop methylation levels in MCI patients than in control subjects and AD patients. Moreover, higher D-loop methylation levels were observed in control subjects than in AD patients in advanced stages of the disease, but not in those at early stages. The present pilot study shows that peripheral D-loop methylation levels differ in patients at different stages of AD pathology, suggesting that further studies deserve to be performed in order to validate the usefulness of D-loop methylation analysis as a peripheral biomarker for the early detection of AD

    Prenatal Environmental Stressors and DNA Methylation Levels in Placenta and Peripheral Tissues of Mothers and Neonates Evaluated by Applying Artificial Neural Networks

    Get PDF
    Exposure to environmental stressors during pregnancy plays an important role in influencing subsequent susceptibility to certain chronic diseases through the modulation of epigenetic mechanisms, including DNA methylation. Our aim was to explore the connections between environmental exposures during gestation with DNA methylation of placental cells, maternal and neonatal buccal cells by applying artificial neural networks (ANNs). A total of 28 mother-infant pairs were enrolled. Data on gestational exposure to adverse environmental factors and on mother health status were collected through the administration of a questionnaire. DNA methylation analyses at both gene-specific and global level were analyzed in placentas, maternal and neonatal buccal cells. In the placenta, the concentrations of various metals and dioxins were also analyzed. Analysis of ANNs revealed that suboptimal birth weight is associated with placental H19 methylation, maternal stress during pregnancy with methylation levels of NR3C1 and BDNF in placentas and mother's buccal DNA, respectively, and exposure to air pollutants with maternal MGMT methylation. Associations were also observed between placental concentrations of lead, chromium, cadmium and mercury with methylation levels of OXTR in placentas, HSD11B2 in maternal buccal cells and placentas, MECP2 in neonatal buccal cells, and MTHFR in maternal buccal cells. Furthermore, dioxin concentrations were associated with placental RELN, neonatal HSD11B2 and maternal H19 gene methylation levels. Current results suggest that exposure of pregnant women to environmental stressors during pregnancy could induce aberrant methylation levels in genes linked to several pathways important for embryogenesis in both the placenta, potentially affecting foetal development, and in the peripheral tissues of mothers and infants, potentially providing peripheral biomarkers of environmental exposure
    corecore