8 research outputs found

    SARS-CoV-2 3D database: Understanding the Coronavirus Proteome and Evaluating Possible Drug Targets.

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly growing infectious disease, widely spread with high mortality rates. Since the release of the SARS-CoV-2 genome sequence in March 2020, there has been an international focus on developing target-based drug discovery, which also requires knowledge of the 3D structure of the proteome. Where there are no experimentally solved structures, our group has created 3D models with coverage of 97.5% and characterised them using state-of-the-art computational approaches. Models of protomers and oligomers, together with predictions of substrate and allosteric binding sites, protein- ligand docking, SARS-CoV-2 protein interactions with human proteins, impacts of mutations, and mapped solved experimental structures are freely available for download. These are imple- mented in SARS CoV-2 3D, a comprehensive and user-friendly database, available at https://sars3d.com/. This provides essential information for drug discovery, both to evaluate targets and design new potential therapeutics.This work is supported and funded by King Abdullah scholarship (Saudi Arabia research coun- cil), and American Leprosy Missions grants (G88726), SET is funded by the Cystic Fibrosis Trust (RG 70975) and Fondation Botnar (RG91317). A.R.J is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship (BB/M011194/1). B.B. is funded by the Cystic Fibrosis Trust and L.C. on a studentship from Ipsen. T.L.B. is funded by a the Wellcome Trust Investigator Award, PHZJ/489 RG83114 (2016-2021

    The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis

    Get PDF
    Abstract: The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins

    Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses.

    No full text
    Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins
    corecore