1,000 research outputs found
Multi-phonon scattering and Ti-induced hydrogen dynamics in sodium alanate
We use ab initio methods and neutron inelastic scattering (NIS) to study the
structure, energetics, and dynamics of pure and Ti-doped sodium alanate
(NaAlH_4), focusing on the possibility of substitutional Ti doping. The NIS
spectrum is found to exhibit surprisingly strong and sharp two-phonon features.
The calculations reveal that substitutional Ti doping is energetically
possible. Ti prefers to substitute for Na and is a powerful hydrogen attractor
that facilitates multiple Al--H bond breaking. Our results hint at new ways of
improving the hydrogen dynamics and storage capacity of the alanates.Comment: 5 pages, with 4 postscript figures embedded. Uses REVTEX4 and
graphicx macro
The relationship between mantle potential temperature and oceanic lithosphere buoyancy
The Earth's mantle potential temperature () is thought to have cooled by ∼250 ∘C since the Archean, causing a progressive change in both the structure and composition of oceanic lithosphere. These variables affect the negative buoyancy of subducting slabs, which is known to be an important force in driving plate motions. However, the relationship between and slab buoyancy remains unclear. Here, we model the formation and subduction of oceanic lithosphere as a function of , to investigate how influences the buoyancy of subducting slabs, and by extension how buoyancy forces may have changed through time. First, we simulate isentropic melting of peridotite at mid-ocean ridges over a range of (1300–1550 ∘C) to calculate oceanic lithosphere structure and composition. Second, we model the thermal evolution of oceanic plates undergoing subduction for a variety of scenarios (by varying lithospheric thickness, slab length and subduction velocity). Finally, we integrate the structural, compositional and thermal constraints to forward model subduction metamorphism of oceanic plates to determine down-going slab density structures. When compared with ambient mantle, these models allow us to calculate buoyancy forces acting on subducting slabs. Our results indicate that oceanic lithosphere derived from hotter mantle has a greater negative buoyancy, and therefore subduction potential, than lithosphere derived from cooler mantle for a wide range of subduction scenarios. With respect to the early Earth, this conclusion supports the viability of subduction, and models of subduction zone initiation that invoke the concept of oceanic lithosphere being primed to subduct. However, we also show that decreases to lithosphere thickness and slab length, and reduced crustal hydration, progressively reduce slab negative buoyancy. These results highlight the need for robust estimates of early Earth lithospheric properties when considering whether subduction was operative at this time. Nevertheless, our findings suggest that subduction processes on the early Earth may have been uniformitarian
Revisiting Static and Dynamic Spin Ice Correlations in Ho2Ti2O7
Elastic and inelastic neutron scattering studies have been carried out on the
pyrochlore magnet Ho2Ti2O7. Measurements in zero applied magnetic field show
that the disordered spin ice ground state of Ho2Ti2O7 is characterized by a
pattern of rectangular diffuse elastic scattering within the [HHL] plane of
reciprocal space, which closely resembles the zone boundary scattering seen in
its sister compound Dy2Ti2O7. Well-defined peaks in the zone boundary
scattering develop only within the spin ice ground state below ~ 2 K. In
contrast, the overall diffuse scattering pattern evolves on a much higher
temperature scale of ~ 17 K. The diffuse scattering at small wavevectors below
[001] is found to vanish on going to Q=0, an explicit signature of expectations
for dipolar spin ice. Very high energy-resolution inelastic measurements reveal
that the spin ice ground state below ~ 2 K is also characterized by a
transition from dynamic to static spin correlations on the time scale of
10^{-9} seconds. Measurements in a magnetic field applied along the
[10] direction in zero-field cooled conditions show that the system
can be broken up into orthogonal sets of polarized alpha chains along
[10] and quasi-one-dimensional beta chains along [110]. Three
dimensional correlations between beta chains are shown to be very sensitive to
the precise alignment of the [10] externally applied magnetic field.Comment: 11 pages, 10 figures. Submitted for publicatio
C-Band All-Sky Survey: A First Look at the Galaxy
We present an analysis of the diffuse emission at 5 GHz in the first quadrant
of the Galactic plane using two months of preliminary intensity data taken with
the C-Band All Sky Survey (C-BASS) northern instrument at the Owens Valley
Radio Observatory, California. Combining C-BASS maps with ancillary data to
make temperature-temperature plots we find synchrotron spectral indices of
between 0.408 GHz and 5 GHz and between 1.420 GHz and 5 GHz for ,
. Through the subtraction of a radio recombination
line (RRL) free-free template we determine the synchrotron spectral index in
the Galactic plane () to be between
0.408 GHz and 5 GHz, with a contribution of per cent from free-free
emission at 5\,GHz. These results are consistent with previous low frequency
measurements in the Galactic plane. By including C-BASS data in spectral fits
we demonstrate the presence of anomalous microwave emission (AME) associated
with the HII complexes W43, W44 and W47 near 30 GHz, at 4.4 sigma, 3.1 sigma
and 2.5 sigma respectively. The CORNISH VLA 5 GHz source catalogue rules out
the possibility that the excess emission detected around 30\;GHz may be due to
ultra-compact HII regions. Diffuse AME was also identified at a 4 sigma level
within , between 5
GHz and 22.8 GHz.Comment: 16 pages, 9 figures, submitted to MNRAS, referee's corrections made,
awaiting for final approval for publicatio
The C-Band All-Sky Survey: Instrument design, status, and first-look data
The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of
diffuse Galactic emission at 5 GHz in total intensity and linear polarization.
These maps will be used (with other surveys) to separate the several
astrophysical components contributing to microwave emission, and in particular
will allow an accurate map of synchrotron emission to be produced for the
subtraction of foregrounds from measurements of the polarized Cosmic Microwave
Background. We describe the design of the analog instrument, the optics of our
6.1 m dish at the Owens Valley Radio Observatory, the status of observations,
and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter,
Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
(2010), Vol. 7741, 77411I-1 - 77411I-1
The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research
We describe the design and current performance of the high-flux
backscattering spectrometer located at the NIST Center for Neutron Research.
The design incorporates several state-of-the-art neutron optical devices to
achieve the highest flux on sample possible while maintaining an energy
resolution of less than 1mueV. Foremost among these is a novel phase-space
transformation chopper that significantly reduces the mismatch between the beam
divergences of the primary and secondary parts of the instrument. This resolves
a long-standing problem of backscattering spectrometers, and produces a
relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator
system has been built that is capable of achieving energy transfers of up to
+-50mueV, thereby extending the dynamic range of this type of spectrometer by
more than a factor of two over that of other reactor-based backscattering
instruments
Threshold effects in excited charmed baryon decays
Motivated by recent results on charmed baryons from CLEO and FOCUS, we
reexamine the couplings of the orbitally excited charmed baryons. Due to its
proximity to the [Sigma_c pi] threshold, the strong decays of the
Lambda_c(2593) are sensitive to finite width effects. This distorts the shape
of the invariant mass spectrum in Lambda_{c1}-> Lambda_c pi^+pi^- from a simple
Breit-Wigner resonance, which has implications for the experimental extraction
of the Lambda_c(2593) mass and couplings. We perform a fit to unpublished CLEO
data which gives M(Lambda_c(2593)) - M(Lambda_c) = 305.6 +- 0.3 MeV and h2^2 =
0.24^{+0.23}_{-0.11}, with h2 the Lambda_{c1}-> Sigma_c pi strong coupling in
the chiral Lagrangian. We also comment on the new orbitally excited states
recently observed by CLEO.Comment: 9 pages, 3 figure
- …