52 research outputs found

    WHOI silhouette DIGITIZER version 1.0 user’s guide

    Get PDF
    WHOI Silhouette DIGITIZER is a MATLAB-based computer program for measuring the lengths of marine organisms in the macrozooplankton size range. DIGITIZER displays a scanned photographic image of a seawater slurry containing large numbers of marine organisms, upon which is superimposed a reference grid. DIGITIZER then allows you to measure the organisms' lengths using the cursor on the computer screen. DIGITIZER automatically calculates each organism’s biomass and generates spreadsheet compatible output listings of basic statistics derived from the data. DIGITIZER also produces text files of lengths, weights, and size-frequency histograms.Funding was provided by the National Science Foundation under Grant Nos. OCE-9806381, OCE-9940880, and OCE-0095069

    Seasonality and stable isotopes in planktonic foraminifera off Cape Cod, Massachusetts

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4011, doi:10.1029/2005PA001150.Monthly samples of stratified plankton tows taken from the slope waters off Cape Cod nearly 25 years ago are used to describe the seasonal succession of planktonic foraminifera and their oxygen isotope ratios. The 15°C seasonal cycle of sea surface temperature (SST) accounts for a diverse mixture of tropical to subpolar species. Summer samples include various Globigerinoides and Neogloboquadrina dutertrei, whereas winter and early spring species include Globigerina bulloides and Neogloboquadrina pachyderma (dextral). Globorotalia inflata lives all year but at varying water depths. Compared with the fauna in 1960–1961 (described by R. Cifelli), our samples seem warmer. Because sea surface salinity varies little during the year, δ18O is mostly a function of SST. Throughout the year, there are always species present with δ18O close to the calculated isotopic equilibrium of carbonate with surface seawater. This raises the possibility that seasonality can be estimated directly from the range of δ18O in a sediment sample provided that the δ18O-salinity relationship is the same as today.Funding was provided by NSF grant OCE-0117149

    Copepods from warm-core ring 82-H

    Get PDF
    See Supplementary information.txt for information regarding how access and use the files in WHOI-89-24-data.zipNet tows were collected with a Multiple Opening/Closing Net Environmental Sampling System (MOCNESS) carrying twenty 1-m2 nets in October 1982 in and near warm-core ring 82-H in the North Atlantic (RV/Knorr cruise 98). This report includes the species list and abundance tables of the copepods found in five of the tows. There are four types of abundance tables: raw data, standardized to #/1000 m3 , integrated #/m2 to 1000 m depth, and cumulative percents over the depth of the tows.Funding was provided by the National Science Foundation through grant Number OCE 80-12748, OCE 85-08350, OCE 87-09962, OCE 80-19055, and OCE 80-17271

    De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Berger, C. A., Steinberg, D. K., Copley, N. J., & Tarrant, A. M. De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression. Marine Genomics, (2021): 100835, https://doi.org/10.1016/j.margen.2021.100835.Copepods are small crustaceans that dominate most zooplankton communities in terms of both abundance and biomass. In the polar oceans, a subset of large lipid-storing copepods occupy central positions in the food web because of their important role in linking phytoplankton and microzooplankton with higher trophic levels. In this paper, we generated a high-quality de novo transcriptome for Rhincalanus gigas, the largest—and among the most abundant—of the Southern Ocean copepods. We then conducted transcriptional profiling to characterize the developmental transition between late-stage juveniles and adult females. We found that juvenile R. gigas substantially upregulate lipid synthesis and glycolysis pathways relative to females, as part of a developmental gene expression program that also implicates processes such as muscle growth, chitin formation, and ion transport. This study provides the first transcriptional profile of a developmental transition within Rhincalanus gigas or any endemic Southern Ocean copepod, thereby extending our understanding of copepod molecular physiology.Funding for this project was provided by the National Science Foundation (Grants OPP-1746087 to AMT and OPP-1440435 to DKS)

    Drawings and descriptions of some deep-sea copepods living above the Guaymas Basin hydrothermal vent field

    Get PDF
    This report includes brief descriptions and illustrations of some of the copepods found in two bathypelagic MOCNESS samples. The MOCNESS was towed horizontally at an altitude of 100-200 m above the bottom in waters 1900 to 2000 m deep near hydrothermal vents in the southern trough of the Guaymas Basin, Gulf of California. Some copepods from one Alvin dive plankton tow collected three to four meters from the bottom in the vent field (2000 m depth) are also included.Funding was provided by the National Science Foundation through Grant No. OCE-8709962

    BCO-DMO Quick Guide

    Get PDF
    BCO-DMO, a repository funded by the National Science Foundation (NSF), supports the oceanographic research community’s data needs throughout the entire data life cycle. This guide describes the services available from BCO-DMO from proposal to preservation and highlights phases where researchers engage significantly with the office.Curating and providing open access to research data is a collaborative process. This process may be thought of as a life cycle with data passing through various phases. Each phase has its own associated actors, roles, and critical activities. Good data management practices are necessary for all phases, from proposal to preservation.NSF #143557

    Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine?

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiebe, P., Baumgartner, M., Copley, N., Lawson, G., Davis, C., Ji, R., & Greene, C. Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine? Progress In Oceanography, 206, (2022): 102861, https://doi.org/10.1016/j.pocean.2022.102861.The variability of zooplankton populations is controlled by external and internal forcing, with the former being principally large-scale changes in circulation, and the latter being driven by in situ growth, competition, and predation. Assessing the relative importance of these forcings is challenging and requires analyses of multifaceted observational data. As part of the U.S. GLOBEC Georges Bank program, a series of cruises were conducted in fall 1997, 1998, and 1999 to survey diapausing populations of Calanus finmarchicus and their predators in Wilkinson, Jordan, and Georges Basins of the Gulf of Maine. Station and underway sampling were conducted using net (1 m2 MOCNESS) and bioacoustic (BIOMAPER-II) systems, respectively, to acquire vertically stratified data for zooplankton biomass, taxonomic, size, and life-stage composition, together with associated environmental data. The results show that the autumn diapausing C. finmarchicus abundance was much lower in 1998 than in 1997 or 1999, even though the overall zooplankton biomass levels were comparable between the three years. The size frequency distribution of the diapausing individuals had a bi-modal pattern in 1997 and 1999, but a single mode in 1998, indicating the demise of an early cohort of the diapausing stock. The relative biomass and computed energy demand of potential invertebrate predators (euphausiids, decapods, medusae, and siphonophores) was found to be higher in 1998 and could account for the missing C. finmarchicus cohort. Evidence collected from this study supports the hypothesis that local predation has the potential to control the diapausing stock of C. finmarchicus in the Gulf of Maine.RJ received support from the Northeast US Shelf Long Term Ecological Research (NES-LTER) project (NSF OCE-1655686) and the US MBON Gulf of Maine project to NERACOOS (NOPP award NA19NOS0120197 and BOEMUMaine Cooperative Agreement M19AC00022) for analyzing the size data and working on the manuscript. Research support was provided by the US GLOBEC Georges Bank Program through the CILER Cooperative Agreement NA-67RJO148 (NOAA Coastal Ocean Program)

    Determining dominant scatterers of sound in mixed zooplankton populations

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 3304-3326, doi:10.1121/1.2793613.High-frequency acoustic scattering techniques have been used to investigate dominant scatterers in mixed zooplankton populations. Volume backscattering was measured in the Gulf of Maine at 43, 120, 200, and 420 kHz. Zooplankton composition and size were determined using net and video sampling techniques, and water properties were determined using conductivity, temperature, and depth sensors. Dominant scatterers have been identified using recently developed scattering models for zooplankton and microstructure. Microstructure generally did not contribute to the scattering. At certain locations, gas-bearing zooplankton, that account for a small fraction of the total abundance and biomass, dominated the scattering at all frequencies. At these locations, acoustically inferred size agreed well with size determined from the net samples. Significant differences between the acoustic, net, and video estimates of abundance for these zooplankton are most likely due to limitations of the net and video techniques. No other type of biological scatterer ever dominated the scattering at all frequencies. Copepods, fluid-like zooplankton that account for most of the abundance and biomass, dominated at select locations only at the highest frequencies. At these locations, acoustically inferred abundance agreed well with net and video estimates. A general approach for the difficult problem of interpreting high-frequency acoustic scattering in mixed zooplankton populations is described.This research was supported in part by the U.S. GLOBEC program, NOAA (Grant nos. NA17RJ1223 and NA67RJ0148), the James S. Cole and Cecily C. Selby Endowed Funds, the Penzance Endowed Fund for Support of Assistant Scientists, and the Adams Chair at the Woods Hole Oceanographic Institution. A selected number of focused experiments were also funded by the ONR (Grant No. N00014-98-1-0362)

    Towards Capturing Provenance of the Data Curation Process at Domain-specific Repositories

    Get PDF
    Presented at AGU Fall Meeting, American Geophysical Union, Washington, D.C., 10 – 14 Dec 2018Data repositories often transform submissions to improve understanding and reuse of data by researchers other than the original submitter. However, scientific workflows built by the data submitters often depend on the original data format. In some cases, this makes the repository’s final data product less useful to the submitter. As a result, these two workable but different versions of the data provide value to two disparate, non-interoperable research communities around what should be a single dataset. Data repositories could bridge these two communities by exposing provenance explaining the transform from original submission to final product. A subsequent benefit of this provenance would be the transparent value-add of domain repository data curation. To improve its data management process efficiency, the Biological and Chemical Oceanography Data Management Office (BCO-DMO, https://www.bco-dmo.org) has been adopting the data containerization specification defined by the Frictionless Data project (https://frictionlessdata.io). Recently, BCO-DMO has been using the Frictionless Data Package Pipelines Python library (https://github.com/frictionlessdata/datapackage-pipelines) to capture the data curation processing steps that transform original submissions to final data products. Because these processing steps are stored using a declarative language they can be converted to a structured provenance record using the Provenance Ontology (PROV-O, https://www.w3.org/TR/prov-o/). PROV-O abstracts the Frictionless Data elements of BCO-DMO’s workflow for capturing necessary curation provenance and enables interoperability with other external provenance sources and tools. Users who are familiar with PROV-O or the Frictionless Data Pipelines can use either record to reproduce the final data product in a machine-actionable way. While there may still be some curation steps that cannot be easily automated, this process is a step towards end-to-end reproducible transforms throughout the data curation process. In this presentation, BCO-DMO will demonstrate how Frictionless Data Package Pipelines can be used to capture data curation provenance from original submission to final data product exposing the concrete value-add of domain-specific repositories.NSF #143557

    COI metabarcoding of zooplankton species diversity for time-series monitoring of the NW Atlantic continental shelf

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bucklin, A., Batta-Lona, P., Questel, J., Wiebe, P., Richardson, D., Copley, N., & O’Brien, T. COI metabarcoding of zooplankton species diversity for time-series monitoring of the NW Atlantic continental shelf. Frontiers in Marine Science, 9, (2022): 867893, https://doi.org/10.3389/fmars.2022.867893.Marine zooplankton are rapid-responders and useful indicators of environmental variability and climate change impacts on pelagic ecosystems on time scales ranging from seasons to years to decades. The systematic complexity and taxonomic diversity of the zooplankton assemblage has presented significant challenges for routine morphological (microscopic) identification of species in samples collected during ecosystem monitoring and fisheries management surveys. Metabarcoding using the mitochondrial Cytochrome Oxidase I (COI) gene region has shown promise for detecting and identifying species of some – but not all – taxonomic groups in samples of marine zooplankton. This study examined species diversity of zooplankton on the Northwest Atlantic Continental Shelf using 27 samples collected in 2002-2012 from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS Northeast Fisheries Science Center. COI metabarcodes were identified using the MetaZooGene Barcode Atlas and Database (https://metazoogene.org/MZGdb) specific to the North Atlantic Ocean. A total of 181 species across 23 taxonomic groups were detected, including a number of sibling and cryptic species that were not discriminated by morphological taxonomic analysis of EcoMon samples. In all, 67 species of 15 taxonomic groups had ≥ 50 COI sequences; 23 species had >1,000 COI sequences. Comparative analysis of molecular and morphological data showed significant correlations between COI sequence numbers and microscopic counts for 5 of 6 taxonomic groups and for 5 of 7 species with >1,000 COI sequences for which both types of data were available. Multivariate statistical analysis showed clustering of samples within each region based on both COI sequence numbers and EcoMon counts, although differences among the three regions were not statistically significant. The results demonstrate the power and potential of COI metabarcoding for identification of species of metazoan zooplankton in the context of ecosystem monitoring.This publication resulted in part from support provided by the Scientific Committee on Oceanic Research (SCOR). Funds were also contributed by the U.S. National Science Foundation (Grant OCE-1840868) and by national SCOR committees
    • …
    corecore