24 research outputs found

    Early academic achievement in children with isolated clefts: a population-based study in England

    Get PDF
    OBJECTIVES: We used national data to study differences in academic achievement between 5-year-old children with an isolated oral cleft and the general population. We also assessed differences by cleft type. METHODS: Children born in England with an oral cleft were identified in a national cleft registry. Their records were linked to databases of hospital admissions (to identify additional anomalies) and educational outcomes. Z-scores (signed number of SD actual score is above national average) were calculated to make outcome scores comparable across school years and across six assessed areas (personal development, communication and language, maths, knowledge of world, physical development andcreative development). RESULTS: 2802 children without additional anomalies, 5 years old between 2006 and 2012, were included. Academic achievement was significantly below national average for all six assessed areas with z-scores ranging from -0.24 (95% CI -0.32 to -0.16) for knowledge of world to -0.31 (-0.38 to -0.23) for personal development. Differences were small with only a cleft lip but considerably larger with clefts involving the palate. 29.4% of children were documented as having special education needs (national rate 9.7%), which varied according to cleft type from 13.2% with cleft lip to 47.6% with bilateral cleft lip and palate. CONCLUSIONS: Compared with national average, 5-year-old children with an isolated oral cleft, especially those involving the palate, have significantly poorer academic achievement across all areas of learning. These outcomes reflect results of modern surgical techniques and multidisciplinary approach. Children with a cleft may benefit from extra academic support when starting school

    Intramolecular Epistasis and the Evolution of a New Enzymatic Function

    Get PDF
    Atrazine chlorohydrolase (AtzA) and its close relative melamine deaminase (TriA) differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
    corecore