1,039 research outputs found

    A Lensing Reconstruction of Primordial Cosmic Microwave Background Polarization

    Get PDF
    We discuss a possibility to directly reconstruct the CMB polarization field at the last scattering surface by accounting for modifications imposed by the gravitational lensing effect. The suggested method requires a tracer field of the large scale structure lensing potentials that deflected propagating CMB photons from the last scattering surface. This required information can come from a variety of observations on the large scale structure matter distribution, including convergence reconstructed from lensing shear studies involving galaxy shapes. In the case of so-called curl, or B,-modes of CMB polarization, the reconstruction allows one to identify the distinct signature of inflationary gravitational waves.Comment: 6 pages, 2 figures; PRD submitte

    Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01

    Get PDF
    We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of L _(FIR) = 1.4 × 10^(13) L _⊙, and is lensed by a massive group of galaxies into at least four images with a total magnification of ÎŒ = 10.9 ± 0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z = 2.958 ± 0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7 → 6, J = 8 → 7, J = 9 → 8, and J = 10 → 9). Combining the measured line fluxes for these high-J transitions with the J = 1 → 0, J = 3 → 2, and J = 5 → 4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is described well by warm, moderate-density gas with T _(kin) = 86-235 K and n_H_2 = (1.1-3.5)x10^3 cm^(–3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with T _(kin) ~ 200 K, n_H_2 ~ 10^5 cm^(–3) are also consistent with these data. Higher signal-to-noise measurements of the J _(up) ≄ 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy

    Kinetic Sunyaev-Zeldovich effect from galaxy cluster rotation

    Get PDF
    We show how the temperature and the polarisation of the cosmic microwave background are affected by bulk rotation of clusters of galaxies owing to the kinetic Sunyaev-Zeldovich effect. The main effects of rotation are (i) a shift of the position of the peak of the temperature fluctuation relative to the center of the cluster by a few percent of the core radius and (ii) a tilt of the direction of the plane of linear polarisation by several degrees.Comment: 9 pages, 4 figures, submitted A&

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    Impact of Teeth on Social Participation: Modified Treatment Policy Approach

    Get PDF
    Social participation prevents social isolation and loneliness among older adults while having numerous positive effects on their health and well-being in rapidly aging societies. We aimed to estimate the effect of retaining more natural teeth on social participation among older adults in Japan. The analysis used longitudinal data from 24,872 participants in the Japan Gerontological Evaluation Study (2010, 2013, and 2016). We employed a longitudinal modified treatment policy approach to determine the effect of several hypothetical scenarios (preventive scenarios and tooth loss scenarios) on frequent social participation (1 = at least once a week/0 = less than once a week) after a 6-y follow-up. The corresponding statistical parameters were estimated using targeted minimum loss-based estimation (TMLE) method. Number of teeth category (edentate/1–9/10–19/≄20) was treated as a time-varying exposure, and the outcome estimates were adjusted for time-varying (income, self-rated health, marital status, instrumental activities of daily living, vision loss, hearing loss, major comorbidities, and number of household members) and time-invariant covariates (age, sex, education, baseline social participation). Less frequent social participation was associated with older age, male sex, lower income, low educational attainment, and poor self-rated health at the baseline. Social participation improved when tooth loss prevention scenarios were emulated. The best preventive scenario (i.e., maintaining ≄20 teeth among each participant) improved social participation by 8% (risk ratio [RR] = 1.08; 95% confidence interval [CI], 1.05–1.11). Emulated tooth loss scenarios gradually decreased social participation. A hypothetical scenario in which all the participants were edentate throughout the follow-up period resulted in a 11% (RR = 0.89; 95% CI, 0.84–0.94) reduction in social participation. Subsequent tooth loss scenarios showed 8% (RR = 0.92; 95% CI, 0.88–0.95), 6% (RR = 0.94; 95% CI, 0.91–0.97), and 4% (RR = 0.96; 95% CI, 0.93–0.98) reductions, respectively. Thus, among Japanese older adults, retaining a higher number of teeth positively affects their social participation, whereas being edentate or having a relatively lower number of teeth negatively affects their social participation

    Degeneracy in exotic gravitational lensing

    Get PDF
    We present three different theoretically foreseen, but unusual, astrophysical situations where the gravitational lens equation ends up being the same, thus producing a degeneracy problem. These situations are (a) the case of gravitational lensing by exotic stresses (matter violating the weak energy condition and thus having a negative mass, particular cases of wormholes solutions can be used as an example), (b) scalar field gravitational lensing (i.e. when considering the appearance of a scalar charge in the lensing scenario), and (c) gravitational lensing in closed universes (with antipodes).The reasons that lead to this degeneracy in the lens equations, the possibility of actually encountering it in the real universe, and eventually the ways to break it, are discussed.Comment: Accepted for publication in Modern Physics Letters

    HerMES: deep number counts at 250 ÎŒm, 350 ÎŒm and 500 ÎŒm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

    Get PDF
    Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 ÎŒm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 ÎŒm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 ÎŒm and 1000 ÎŒm: 26_(-3)^(+7) nW m^(-2) sr^(-1)

    HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

    Get PDF
    Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 ÎŒm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam
    • 

    corecore