13 research outputs found

    Lensing Reconstruction with CMB Temperature and Polarization

    Get PDF
    Weak gravitational lensing by intervening large-scale structure induces a distinct signature in the cosmic microwave background (CMB) that can be used to reconstruct the weak-lensing displacement map. Estimators for individual Fourier modes of this map can be combined to produce an estimator for the lensing-potenial power spectrum. The naive estimator for this quantity will be biased upwards by the uncertainty associated with reconstructing individual modes; we present an iterative scheme for removing this bias. The variance and covariance of the lensing-potenial power spectrum estimator are calculated and evaluated numerically in a Λ\LambdaCDM universe for Planck and future polarization-sensitive CMB experiments.Comment: 15 pages, 3 figures, submitted to PR

    A single fast radio burst localized to a massive galaxy at cosmological distance

    Get PDF
    Fast radio bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Nonrepeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single-pulse FRB 180924 to a position 4 kiloparsecs from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from those of the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web

    WALLABY pilot survey: Public release of H <scp>i</scp> data for almost 600 galaxies from phase 1 of ASKAP pilot observations

    Get PDF
    International audienceAbstract We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three 60deg260\,\mathrm{deg}^{2} regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of z0.08z \lesssim 0.08 . The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of z0.014z \approx 0.014 is relatively low compared to the full WALLABY survey. The median galaxy H i mass is 2.3×109M2.3 \times 10^{9}\,{\rm M}_{{\odot}} . The target noise level of 1.6mJy1.6\,\mathrm{mJy} per 30′′ beam and 18.5kHz18.5\,\mathrm{kHz} channel translates into a 5σ5 \sigma H i mass sensitivity for point sources of about 5.2×108(DL/100Mpc)2M5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}} across 50 spectral channels ( 200kms1{\approx} 200\,\mathrm{km \, s}^{-1} ) and a 5σ5 \sigma H i column density sensitivity of about 8.6×1019(1+z)4cm28.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2} across 5 channels ( 20kms1{\approx} 20\,\mathrm{km \, s}^{-1} ) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.</jats:p

    Australian square kilometre array pathfinder : I. system description

    No full text
    In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 deg(2) at 800MHz. As a two-dimensional array of 36x12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and 1800MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown

    Euclid preparation XXVI: The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

    No full text
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper by Merlin et al. focuses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes DeepLeGATo, Galapagos-2, Morfometryka, Profit and SourceXtractor++ on a sample of about 1.5 million simulated galaxies resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (10% scatter on ideal S\'ersic simulations) down to an apparent magnitude of about 23 in one component and 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5 respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the Euclid official Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters

    Euclid preparation XXVI: The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

    No full text
    International audienceThe various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper by Merlin et al. focuses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes DeepLeGATo, Galapagos-2, Morfometryka, Profit and SourceXtractor++ on a sample of about 1.5 million simulated galaxies resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (10% scatter on ideal S\'ersic simulations) down to an apparent magnitude of about 23 in one component and 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5 respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the Euclid official Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters

    Euclid preparation. Detecting globular clusters in the Euclid survey

    No full text
    International audienceExtragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well EGCs will be detectable in images from the Euclid telescope, using both simulated pre-launch images and the first early-release observations of the Fornax galaxy cluster. The Euclid Wide Survey will provide high-spatial resolution VIS imaging in the broad IE band as well as near-infrared photometry (YE, JE, and HE). We estimate that the galaxies within 100 Mpc in the footprint of the Euclid survey host around 830 000 EGCs of which about 350 000 are within the survey's detection limits. For about half of these EGCs, three infrared colours will be available as well. For any galaxy within 50Mpc the brighter half of its GC luminosity function will be detectable by the Euclid Wide Survey. The detectability of EGCs is mainly driven by the residual surface brightness of their host galaxy. We find that an automated machine-learning EGC-classification method based on real Euclid data of the Fornax galaxy cluster provides an efficient method to generate high purity and high completeness GC candidate catalogues. We confirm that EGCs are spatially resolved compared to pure point sources in VIS images of Fornax. Our analysis of both simulated and first on-sky data show that Euclid will increase the number of GCs accessible with high-resolution imaging substantially compared to previous surveys, and will permit the study of GCs in the outskirts of their hosts. Euclid is unique in enabling systematic studies of EGCs in a spatially unbiased and homogeneous manner and is primed to improve our understanding of many understudied aspects of GC astrophysics
    corecore