18 research outputs found

    Renormalization of Entanglement Entropy and the Gravitational Effective Action

    Get PDF
    The entanglement entropy associated with a spatial boundary in quantum field theory is UV divergent, with the leading term proportional to the area of the boundary. For a class of quantum states defined by a path integral, the Callan-Wilczek formula gives a geometrical definition of the entanglement entropy. We show that, for this class of quantum states, the entanglement entropy is rendered UV-finite by precisely the counterterms required to cancel the UV divergences in the gravitational effective action. In particular, the leading contribution to the entanglement entropy is given by the renormalized Bekenstein-Hawking formula, in accordance with a proposal of Susskind and Uglum. We show that the subleading UV-divergent terms in the entanglement entropy depend nontrivially on the quantum state. We compute new subleading terms in the entanglement entropy and find agreement with the Wald entropy formula for black hole spacetimes with bifurcate Killing horizons. We speculate that the entanglement entropy of an arbitrary spatial boundary may be a well-defined observable in quantum gravity.Comment: 26 pages, 2 figures. v2: minor corrections and clarification

    Scale-dependent homogeneity measures for causal dynamical triangulations

    Get PDF
    I propose two scale-dependent measures of the homogeneity of the quantum geometry determined by an ensemble of causal triangulations. The first measure is volumetric, probing the growth of volume with graph geodesic distance. The second measure is spectral, probing the return probability of a random walk with diffusion time. Both of these measures, particularly the first, are closely related to those used to assess the homogeneity of our own universe on the basis of galaxy redshift surveys. I employ these measures to quantify the quantum spacetime homogeneity as well as the temporal evolution of quantum spatial homogeneity of ensembles of causal triangulations in the well-known physical phase. According to these measures, the quantum spacetime geometry exhibits some degree of inhomogeneity on sufficiently small scales and a high degree of homogeneity on sufficiently large scales. This inhomogeneity appears unrelated to the phenomenon of dynamical dimensional reduction. I also uncover evidence for power-law scaling of both the typical scale on which inhomogeneity occurs and the magnitude of inhomogeneity on this scale with the ensemble average spatial volume of the quantum spatial geometries.Comment: 25 pages, 19 figure

    Renormalization of lattice-regularized quantum gravity models I. General considerations

    Full text link
    Lattice regularization is a standard technique for the nonperturbative definition of a quantum theory of fields. Several approaches to the construction of a quantum theory of gravity adopt this technique either explicitly or implicitly. A crucial complement to lattice regularization is the process of renormalization through which a continuous description of the quantum theory arises. I provide a comprehensive conceptual discussion of the renormalization of lattice-regularized quantum gravity models. I begin with a presentation of the renormalization group from the Wilsonian perspective. I then consider the application of the renormalization group in four contexts: quantum field theory on a continuous nondynamical spacetime, quantum field theory on a lattice-regularized nondynamical spacetime, quantum field theory of continuous dynamical spacetime, and quantum field theory of lattice-regularized dynamical spacetime. The first three contexts serve to identify successively the particular issues that arise in the fourth context. These issues originate in the inescability of establishing all scales solely on the basis of the dynamics. While most of this discussion rehearses established knowledge, the attention that I pay to these issues, especially the previously underappreciated role of standard units of measure, is largely novel. I conclude by briefly reviewing past studies of renormalization of lattice-regularized quantum gravity models. In the second paper of this two-part series, I illustrate the ideas presented here by proposing a renormalization group scheme for causal dynamical triangulations.Comment: 27 pages; revised and updated review of past literature. This is the much delayed first paper in the two-part serie

    Quantizing Horava-Lifshitz Gravity via Causal Dynamical Triangulations

    Full text link
    We extend the discrete Regge action of causal dynamical triangulations to include discrete versions of the curvature squared terms appearing in the continuum action of (2+1)-dimensional projectable Horava-Lifshitz gravity. Focusing on an ensemble of spacetimes whose spacelike hypersurfaces are 2-spheres, we employ Markov chain Monte Carlo simulations to study the path integral defined by this extended discrete action. We demonstrate the existence of known and novel macroscopic phases of spacetime geometry, and we present preliminary evidence for the consistency of these phases with solutions to the equations of motion of classical Horava-Lifshitz gravity. Apparently, the phase diagram contains a phase transition between a time-dependent de Sitter-like phase and a time-independent phase. We speculate that this phase transition may be understood in terms of deconfinement of the global gravitational Hamiltonian integrated over a spatial 2-sphere.Comment: 24 pages; 10 figure
    corecore