121 research outputs found
Potential benefits and risks of clinical xenotransplantation
The transplantation of organs and cells from pigs into humans could overcome the critical and continuing problem of the lack of availability of deceased human organs and cells for clinical transplantation. Developments in the genetic engineering of pigs have enabled considerable progress to be made in the experimental laboratory in overcoming the immune barriers to successful xenotransplantation. With regard to pig organ xenotransplantation, antibody- and cell-mediated rejection have largely been overcome, and the current major barrier is the development of coagulation dysregulation. This is believed to be due to a combination of immune activation of the vascular endothelial cells of the graft and molecular incompatibilities between the pig and primate coagulation-anticoagulation systems. Pigs with new genetic modifications specifically directed to this problem are now becoming available. With regard to less complex tissues, such as islets (for the treatment of diabetes), neuronal cells (for the treatment of Parkinson's disease), and corneas, the remaining barriers are less problematic, and graft survival in nonhuman primate models extends for > 1 year in all three cases. In planning the initial clinical trials, consideration will be concentrated on the risk-benefit ratio, based to a large extent on the results of preclinical studies in nonhuman primates. If the benefit to the patient is anticipated to be high, eg, insulin-independent control of glycemia, and the potential risks low, eg, minimal risk of transfer of a porcine infectious agent, then a clinical trial would be justified. © 2012 Cooper and Ayares, publisher and licensee Dove Medical Press Ltd
Potential for clinical pancreatic islet xenotransplantation
Diabetes mellitus is increasing worldwide. Type 1 diabetes can be treated successfully by islet allotransplantation, the results of which are steadily improving. However, the number of islets that can be obtained from deceased human donors will never be sufficient to cure more than a very small percentage of patients who might benefit from transplantation. Although there are some differences in glucose metabolism between pigs and humans, the use of pigs could provide an unlimited supply of islets, and the insulin produced would undoubtedly control glucose levels. Transplantation of islets into the portal vein results in islets residing in the liver; however, an early inflammatory response and rejection remain problematic, even when the recipient is receiving immunosuppressive therapy. In the long term, immunosuppressive drugs may exhibit toxicities to patients and specifically harm the islet cells. In contrast, encapsulation techniques provide islets with a physical barrier that prevents antibodies binding to the islet graft while still allowing insulin to be released into the recipient’s circulation; in theory, patients receiving encapsulated grafts might not require exogenous immunosuppressive therapy. Nonhuman primates with encapsulated pig islet transplants have remained insulin-independent for several weeks, but long-term efficacy remains uncertain. Furthermore, techniques are now available to knock out genes from the pig and/or insert human genes, thus rendering the antigenic structure of pigs closer to that of humans, and providing protection from the human immune response. Islet transplantation from genetically engineered pigs has been followed by insulin independence in a small number of nonhuman primates for greater than 1 year. Neonatal islets have some advantages over adult islets in that they are easier to isolate and culture, and have the ability to proliferate during the first few months after transplantation. In 2009, the International Xenotransplantation Association set up a group to encourage and advise on clinical trials of pig islet xenotransplantation; this group’s guidelines are discussed. Clinical trials of encapsulated pig islets are already under way
Pediatric Cardiac Xenotransplantation: Recommendations for the Ethical Design of Clinical Trials
For children with complex congenital heart problems, cardiac allotransplantation is sometimes the best therapeutic option. However, availability of hearts for pediatric patients is limited, resulting in a long and growing waitlist, and a high mortality rate while waiting. Cardiac xenotransplantation has been proposed as one therapeutic alternative for neonates and infants, either in lieu of allotransplantation or as a bridge until an allograft becomes available. Scientific and clinical developments in xenotransplantation appear likely to permit cardiac xenotransplantation clinical trials in adults in the coming years. The ethical issues around xenotransplantation of the heart and other organs and tissues have recently been examined, but to date, only limited literature is available on the ethical issues that are attendant with pediatric heart xenotransplantation. Here, we summarize the ethical issues, focusing on (i) whether cardiac xenotransplantation should proceed in adults or children first, (ii) pediatric recipient selection for initial xenotransplantation trials, (iii) special problems regarding informed consent in this context, and (iv) related psychosocial and public perception considerations. We conclude with specific recommendations regarding ethically informed design of pediatric heart xenotransplantation trials
An approach to the control of disease transmission in pig-to-human xenotransplantation.
Abstract: Although several major immunologic hurdles need to be overcome, the pig is currently considered the most likely source animal of cells, tissues and organs for transplantation into humans. Concerns have been raised with regard to the potential for the transfer of infectious agents with the transplanted organ to the human recipient. This risk is perceived to be increased as it is likely that the patient will be iatrogenically immunocompromised and the organ-source pig may be genetically engineered in such a way to render its organs particularly susceptible to infection with human viruses. Furthermore, the risk may not be restricted to the recipient, but may have consequences for the health of others in the community. The identification of porcine endogenous retroviruses and of hitherto unknown viruses have given rise to the most concern. We document here the agents we believe should be excluded from the organ-source pigs. We discuss the likelihood of achieving this aim and outline the potential means by which it may best be achieved
Constraining the Nature of Dark Energy using the SKA
We investigate the potential of the Square Kilometer Array Telescope (SKA) to
constrain the sound speed of dark energy. The Integrated Sachs Wolfe (ISW)
effect results in a significant power spectrum signal when CMB temperature
anisotropies are cross-correlated with galaxies detectable with the SKA in HI.
We consider using this measurement, the autocorrelation of HI galaxies and the
CMB temperature power spectrum to derive constraints on the sound speed. We
study the contributions to the cross-correlation signal made by galaxies at
different redshifts and use redshift tomography to improve the signal-to-noise.
We use a chi-square analysis to estimate the significance of detecting a sound
speed different from that expected in quintessence models, finding that there
is potential to distinguish very low sound speeds from the quintessence value.Comment: 8 pages, 8 figures; updated references for publication MNRA
Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study
Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes
- …