9 research outputs found

    Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    No full text
    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel(5-7). Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion(8) has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites(8-11). Here we show for a bifunctional catalyst-comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder-that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil(6,7), should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts(12-15)

    Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles

    No full text
    The interaction of the metal and support in oxide-supported transition-metal catalysts has been proven to have extremely favorable effects on catalytic performance. Herein, mesoporous Co3O4, NiO, MnO2, Fe2O3, and CeO2 were synthesized and utilized in CO oxidation reactions to compare the catalytic activities before and after loading of 2.5 nm Pt nanoparticles. Turnover frequencies (TOFs) of pure mesoporous oxides were 0.0002–0.015 s–1, while mesoporous silica was catalytically inactive in CO oxidation. When Pt nanoparticles were loaded onto the oxides, the TOFs of the Pt/metal oxide systems (0.1–500 s–1) were orders of magnitude greater than those of the pure oxides or the silica-supported Pt nanoparticles. The catalytic activities of various Pt/oxide systems were further influenced by varying the ratio of CO and O2 in the reactant gas feed, which provided insight into the mechanism of the observed support effect. In situ characterization using near-edge X-ray absorption fine structure (NEXAFS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS) under catalytically relevant reaction conditions demonstrated a strong correlation between the oxidation state of the oxide support and the catalytic activity at the oxide–metal interface. Through catalytic activity measurements and in situ X-ray spectroscopic probes, CoO, Mn3O4, and CeO2 have been identified as the active surface phases of the oxide at the interface with Pt nanoparticles.close523

    Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity

    No full text
    corecore