15 research outputs found

    Three ages of Venus

    Get PDF
    A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian

    Lunar and Hawaiian lava tubes: Analogs and uses based on terrestrial field data

    Get PDF
    Presented here is an analysis of the data collected for a large number of Hawaiian lava tubes on the islands of Oahu, Molokai, and Hawaii. The results are extrapolated to lunar conditions. It is argued that lava tubes that formed on the Earth and the Moon are relatively stable over time, as illustrated by the ridigity of the Hawaiian prehistoric lava tubes as well as the historic tubes located in the bombing range near Mauna Loa. These natural structures should be considered for use in planning for the expansion and advanced stages of the future manned lunar base

    Regional and Localized Deposits on the Moon

    Get PDF
    Earth-based telescopic remote sensing studies have provided important information concerning lunar pyroclastic deposits. Combined with the returned lunar sample studies and analyses of lunar photography, we have learned a great deal about the nature and origin of these explosive volcanic materials. Lunar pyroclastic deposits are more numerous, extensive, and widely distributed than previously thought. Two generic classes of lunar pyroclastics have been identified, regional and localized. From the former, two separate spectral compositional groups have been identified; one is dominated by Fe(2+)-bearing glasses, the other is composed of ilmenite-rich black spheres. Comparatively, three separate spectral groups have been identified among the localized deposits: highlands-rich, olivine-rich, and mare-rich. Returned sample studies and the recently collected Galileo and Clementine data also corroborate these findings. Albedo data and multispectral imagery suggest that the thicker core deposits of the regional dark mantle deposits (RDMD) are surrounded by pyroclastic debris and subjacent highlands material. The presence of a major component of pyroclastic debris in the regolith surrounding the core regional deposits has important implications for the resource potential of these materials. Both telescopic and orbital spectra indicate that the regional pyroclastic deposits are rich in iron, titanium and oxygen-bearing minerals. Particle shapes vary from simple glass spheres to compound droplets with quench crystallized textures. Their small grain size and friability make them ideal indigenous feedstock. Compared to other resource feedstock sources on the Moon, these pyroclastic materials may be the best oxygen resource on the Moon

    Volcanism in Eastern Africa

    Get PDF
    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit further study and monitoring of the volcanic activity in the area. This is of concern due to the large numbers of refugees fleeing into Zaire where they are being positioned at the base of Mt. Nyiragongo. The refugees located at the base of the volcano are in direct hazard of suffocation by gas emission and destruction by lava flow. The results from this summer study will be used to secure future funding to enable continuation of this project

    LDEF data: Comparisons with existing models

    Get PDF
    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings

    There's Iron in Them Thar Hills: A Geologic Look at the Aristarchus Plateau as a Potential Landing Site for Human Lunar Return

    Get PDF
    Lunar pyroclastic deposits are unique among lunar soils. Composed of very fine grained glass beads rich in Fe, Ti and Mg they yield unique spectral signatures. From the spectra two major classes and five subclasses of lunar dark mantling deposits have been identified. Recent work by me and others has shown that the larger regional deposits are more numerous, extensive, thicker, and widely distributed than previously thought, leading us to suggest that they would make ideal resource feedstock for future lunar surface activities. Returned sample studies and the recently collected Galileo and Clementine data also corroborate these findings. Recent planning for return to the Moon indicates that large cost savings can result from using locally produced oxygen, and recent JSC laboratory results indicate that iron-rich pyroclastic dark mantling deposits may be the richest oxygen resource on the Moon. My earlier work demonstrated that instead of using regolith, bulk lunar pyroclastic deposits are better suited for beneficiation as they are thick (lO's m's), unconsolidated, fine-grained deposits. In addition, the lack of rocks and boulders and the typically flat to gently rolling terrain will facilitate their mining and processing. In preparation for the Human Lunar Return (HLR) I have characterized the Aristarchus Plateau (24 deg. N 52 deg. W) as a potential landing site for an in-situ resource utilization (ISRU) demonstration. The geologic diversity and large volume of Fe-rich pyroclastic material present at the Aristarchus site make it an ideal target for extracting O2, H2 and halogens. This paper (1) describes the current understanding of the geology of Aristarchus plateau; (2) describes the resource potential of the Aristarchus plateau; and (3) presents several candidate landing sites on the plateau for future lunar activities

    A search for intact lava tubes on the Moon: Possible lunar base habitats

    Get PDF
    We have surveyed lunar sinuous rilles and other volcanic features in an effort to locate intact lava tubes that could be used to house an advanced lunar base. Criteria were established for identifying intact tube segments. Sixty-seven tube candidates within 20 rilles were identified on the lunar nearside. The rilles, located in four mare regions, varied in size and sinuosity. We identified four rilles that exhibited particularly strong evidence for the existence of intact lava tube segments. These are located in the following areas: (1) south of Gruithuisen K, (2) in the Marius Hills region, (3) in the southeastern Mare Serenitatis, and (4) in the eastern Mare Serenitatis. We rated each of the 67 probable tube segments for lunar base suitability based on its dimensions, stability, location, and access to lunar resources. Nine tube segments associated with three separate rilles are considered prime candidates for use as part of an advanced lunar base

    On using a pyroclastic deposit as a manned lunar base site

    Get PDF
    Hawke et al. (1990) suggest that ilmenite found in Apollo 17-type pyroclastic glass may provide feedstock for the hydrogen reduction of ilmenite process for producing lunar oxygen. They also suggest that the ilmenite may help retain solar wind hydrogen and helium which can be extracted for use at a lunar outpost or even transported back to Earth for fusion fuel in the case of helium-3. Therefore, they suggest that ilmenite-rich material may be the best candidate. Here, researchers propose a somewhat different approach. They propose that the pyroclastic glass can be reduced directly to produce oxygen and one or more metals. Sulfur would be another important byproduct of the processing. This process would eliminate the need for having specific minerals such as ilmenite or for doing any mineral concentration. The bulk pyroclastic would provide the feedstock. Some recent experiments at the Johnson Space Center suggest that an iron-rich composition would be the most suitable for this direct feedstock reduction and that the titanium content may not be important. Also, the lunar pyroclastic deposits would be extremely useful in constructing and supporting a lunar base

    Damage areas on selected LDEF aluminum surfaces

    Get PDF
    With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers

    Remote sensing and geologic studies of the terrain northwest of Humorum basin

    Get PDF
    A portion of the highlands terrain northwest of the Humorum basin, a large multiringed impact structure on the southwestern portion of the lunar nearside, exhibits anomalous characteristics in several remote sensing data sets. A variety of remote sensing studies of the terrain northwest of Humorum basin were performed in order to determine the composition and origin of the anomalous unit as well as the composition of the highland material exposed by the Humorum impact event. It was found that at least a portion of the mare-bounding ring of Humorum is composed of pure anorthosite. Other details of the study are reported
    corecore