1,264 research outputs found

    Dynamical Probability Distribution Function of the SK Model at High Temperatures

    Full text link
    The microscopic probability distribution function of the Sherrington-Kirkpatrick (SK) model of spin glasses is calculated explicitly as a function of time by a high-temperature expansion. The resulting formula to the third order of the inverse temperature shows that an assumption made by Coolen, Laughton and Sherrington in their recent theory of dynamics is violated. Deviations of their theory from exact results are estimated quantitatively. Our formula also yields explicit expressions of the time dependence of various macroscopic physical quantities when the temperature is suddenly changed within the high-temperature region.Comment: LaTeX, 6 pages, Figures upon request (here revised), To be published in J. Phys. Soc. Jpn. 65 (1996) No.

    Order-Parameter Flow in the SK Spin-Glass II: Inclusion of Microscopic Memory Effects

    Full text link
    We develop further a recent dynamical replica theory to describe the dynamics of the Sherrington-Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order parameters. We show how microscopic memory effects can be included in the formalism through the introduction of a dynamic order parameter function: the joint spin-field distribution. The resulting formalism describes very accurately the relaxation phenomena observed in numerical simulations, including the typical overall slowing down of the flow that was missed by the previous simple two-parameter theory. The advanced dynamical replica theory is either exact or a very good approximation.Comment: same as original, but this one is TeXabl

    Cluster Derivation of the Parisi Scheme for Disordered Systems

    Get PDF
    We propose a general quantitative scheme in which systems are given the freedom to sacrifice energy equi-partitioning on the relevant time-scales of observation, and have phase transitions by separating autonomously into ergodic sub-systems (clusters) with different characteristic time-scales and temperatures. The details of the break-up follow uniquely from the requirement of zero entropy for the slower cluster. Complex systems, such as the Sherrington-Kirkpatrick model, are found to minimise their free energy by spontaneously decomposing into a hierarchy of ergodically equilibrating degrees of freedom at different (effective) temperatures. This leads exactly and uniquely to Parisi's replica symmetry breaking scheme. Our approach, which is somewhat akin to an earlier one by Sompolinsky, gives new insight into the physical interpretation of the Parisi scheme and its relations with other approaches, numerical experiments, and short range models. Furthermore, our approach shows that the Parisi scheme can be derived quantitatively and uniquely from plausible physical principles.Comment: 6 pages, 3 figures, proceedings of international conference on "Disordered And Complex Systems", 10-14 July 2000 King's College Londo

    Market response to external events and interventions in spherical minority games

    Full text link
    We solve the dynamics of large spherical Minority Games (MG) in the presence of non-negligible time dependent external contributions to the overall market bid. The latter represent the actions of market regulators, or other major natural or political events that impact on the market. In contrast to non-spherical MGs, the spherical formulation allows one to derive closed dynamical order parameter equations in explicit form and work out the market's response to such events fully analytically. We focus on a comparison between the response to stationary versus oscillating market interventions, and reveal profound and partially unexpected differences in terms of transition lines and the volatility.Comment: 14 pages LaTeX, 5 (composite) postscript figures, submitted to Journal of Physics

    Dynamics of on-line Hebbian learning with structurally unrealizable restricted training sets

    Full text link
    We present an exact solution for the dynamics of on-line Hebbian learning in neural networks, with restricted and unrealizable training sets. In contrast to other studies on learning with restricted training sets, unrealizability is here caused by structural mismatch, rather than data noise: the teacher machine is a perceptron with a reversed wedge-type transfer function, while the student machine is a perceptron with a sigmoidal transfer function. We calculate the glassy dynamics of the macroscopic performance measures, training error and generalization error, and the (non-Gaussian) student field distribution. Our results, which find excellent confirmation in numerical simulations, provide a new benchmark test for general formalisms with which to study unrealizable learning processes with restricted training sets.Comment: 7 pages including 3 figures, using IOP latex2e preprint class fil

    Solvable Lattice Gas Models of Random Heteropolymers at Finite Density: II. Dynamics and Transitions to Compact States

    Full text link
    In this paper we analyse both the dynamics and the high density physics of the infinite dimensional lattice gas model for random heteropolymers recently introduced in \cite{jort}. Restricting ourselves to site-disordered heteropolymers, we derive exact closed deterministic evolution equations for a suitable set of dynamic order parameters (in the thermodynamic limit), and use these to study the dynamics of the system for different choices of the monomer polarity parameters. We also study the equilibrium properties of the system in the high density limit, which leads to a phase diagram exhibiting transitions between swollen states, compact states, and regions with partial compactification. Our results find excellent verification in numerical simulations, and have a natural and appealing interpretation in terms of real heteropolymers.Comment: 12 pages, 8 eps figures, revised version (to be published in EPJ

    Generating functional analysis of Minority Games with real market histories

    Full text link
    It is shown how the generating functional method of De Dominicis can be used to solve the dynamics of the original version of the minority game (MG), in which agents observe real as opposed to fake market histories. Here one again finds exact closed equations for correlation and response functions, but now these are defined in terms of two connected effective non-Markovian stochastic processes: a single effective agent equation similar to that of the `fake' history models, and a second effective equation for the overall market bid itself (the latter is absent in `fake' history models). The result is an exact theory, from which one can calculate from first principles both the persistent observables in the MG and the distribution of history frequencies.Comment: 39 pages, 5 postscript figures, iop styl

    DYNAMICAL SOLUTION OF A MODEL WITHOUT ENERGY BARRIERS

    Full text link
    In this note we study the dynamics of a model recently introduced by one of us, that displays glassy phenomena in absence of energy barriers. Using an adiabatic hypothesis we derive an equation for the evolution of the energy as a function of time that describes extremely well the glassy behaviour observed in Monte Carlo simulations.Comment: 11 pages, LaTeX, 3 uuencoded figure
    corecore