746 research outputs found

    Theory of agent-based market models with controlled levels of greed and anxiety

    Full text link
    We use generating functional analysis to study minority-game type market models with generalized strategy valuation updates that control the psychology of agents' actions. The agents' choice between trend following and contrarian trading, and their vigor in each, depends on the overall state of the market. Even in `fake history' models, the theory now involves an effective overall bid process (coupled to the effective agent process) which can exhibit profound remanence effects and new phase transitions. For some models the bid process can be solved directly, others require Maxwell-construction type approximations.Comment: 30 pages, 10 figure

    Dynamics of on-line Hebbian learning with structurally unrealizable restricted training sets

    Full text link
    We present an exact solution for the dynamics of on-line Hebbian learning in neural networks, with restricted and unrealizable training sets. In contrast to other studies on learning with restricted training sets, unrealizability is here caused by structural mismatch, rather than data noise: the teacher machine is a perceptron with a reversed wedge-type transfer function, while the student machine is a perceptron with a sigmoidal transfer function. We calculate the glassy dynamics of the macroscopic performance measures, training error and generalization error, and the (non-Gaussian) student field distribution. Our results, which find excellent confirmation in numerical simulations, provide a new benchmark test for general formalisms with which to study unrealizable learning processes with restricted training sets.Comment: 7 pages including 3 figures, using IOP latex2e preprint class fil

    The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph

    Full text link
    We use the cavity method to study parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution of the spins. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulation results. Using a heuristic method, the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results of this method are discussed and compared with simulations

    Closure of Macroscopic Laws in Disordered Spin Systems: A Toy Model

    Full text link
    We use a linear system of Langevin spins with disordered interactions as an exactly solvable toy model to investigate a procedure, recently proposed by Coolen and Sherrington, for closing the hierarchy of macroscopic order parameter equations in disordered spin systems. The closure procedure, based on the removal of microscopic memory effects, is shown to reproduce the correct equations for short times and in equilibrium. For intermediate time-scales the procedure does not lead to the exact equations, yet for homogeneous initial conditions succeeds at capturing the main characteristics of the flow in the order parameter plane. The procedure fails in terms of the long-term temporal dependence of the order parameters. For low energy inhomogeneous initial conditions and near criticality (where zero modes appear) deviations in temporal behaviour are most apparent. For homogeneous initial conditions the impact of microscopic memory effects on the evolution of macroscopic order parameters in disordered spin systems appears to be mainly an overall slowing down.Comment: 14 pages, LateX, OUTP-94-24

    Statistical Mechanics of Dilute Batch Minority Games with Random External Information

    Full text link
    We study the dynamics and statics of a dilute batch minority game with random external information. We focus on the case in which the number of connections per agent is infinite in the thermodynamic limit. The dynamical scenario of ergodicity breaking in this model is different from the phase transition in the standard minority game and is characterised by the onset of long-term memory at finite integrated response. We demonstrate that finite memory appears at the AT-line obtained from the corresponding replica calculation, and compare the behaviour of the dilute model with the minority game with market impact correction, which is known to exhibit similar features.Comment: 22 pages, 6 figures, text modified, references updated and added, figure added, typos correcte

    Feed-Forward Chains of Recurrent Attractor Neural Networks Near Saturation

    Full text link
    We perform a stationary state replica analysis for a layered network of Ising spin neurons, with recurrent Hebbian interactions within each layer, in combination with strictly feed-forward Hebbian interactions between successive layers. This model interpolates between the fully recurrent and symmetric attractor network studied by Amit el al, and the strictly feed-forward attractor network studied by Domany et al. Due to the absence of detailed balance, it is as yet solvable only in the zero temperature limit. The built-in competition between two qualitatively different modes of operation, feed-forward (ergodic within layers) versus recurrent (non- ergodic within layers), is found to induce interesting phase transitions.Comment: 14 pages LaTex with 4 postscript figures submitted to J. Phys.

    Slowly evolving geometry in recurrent neural networks I: extreme dilution regime

    Full text link
    We study extremely diluted spin models of neural networks in which the connectivity evolves in time, although adiabatically slowly compared to the neurons, according to stochastic equations which on average aim to reduce frustration. The (fast) neurons and (slow) connectivity variables equilibrate separately, but at different temperatures. Our model is exactly solvable in equilibrium. We obtain phase diagrams upon making the condensed ansatz (i.e. recall of one pattern). These show that, as the connectivity temperature is lowered, the volume of the retrieval phase diverges and the fraction of mis-aligned spins is reduced. Still one always retains a region in the retrieval phase where recall states other than the one corresponding to the `condensed' pattern are locally stable, so the associative memory character of our model is preserved.Comment: 18 pages, 6 figure

    Diagonalization of replicated transfer matrices for disordered Ising spin systems

    Full text link
    We present an alternative procedure for solving the eigenvalue problem of replicated transfer matrices describing disordered spin systems with (random) 1D nearest neighbor bonds and/or random fields, possibly in combination with (random) long range bonds. Our method is based on transforming the original eigenvalue problem for a 2n×2n2^n\times 2^n matrix (where n→0n\to 0) into an eigenvalue problem for integral operators. We first develop our formalism for the Ising chain with random bonds and fields, where we recover known results. We then apply our methods to models of spins which interact simultaneously via a one-dimensional ring and via more complex long-range connectivity structures, e.g. 1+∞1+\infty dimensional neural networks and `small world' magnets. Numerical simulations confirm our predictions satisfactorily.Comment: 24 pages, LaTex, IOP macro
    • …
    corecore