2 research outputs found

    Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order and molecular chaperone activity

    Get PDF
    The 14-3-3 family of intracellular proteins are dimeric, multifunctional adaptor proteins that bind to and regulate the activities of many important signaling proteins. The subunits within 14-3-3 dimers are predicted to be stabilized by salt bridges that are largely conserved across the 14-3-3 protein family and allow the different isoforms to form heterodimers. Here, we have examined the contributions of conserved salt-bridging residues in stabilizing the dimeric state of 14-3-3ζ. Using analytical ultracentrifugation, our results revealed that Asp21 and Glu89 both play key roles in dimer dynamics and contribute to dimer stability. Furthermore, hydrogen-deuterium exchange coupled with mass spectrometry showed that mutation of Asp21 promoted disorder in the N-terminal helices of 14-3-3ζ, suggesting that this residue plays an important role in maintaining structure across the dimer interface. Intriguingly, a D21N 14-3-3ζ mutant exhibited enhanced molecular chaperone ability that prevented amorphous protein aggregation, suggesting a potential role for N-terminal disorder in 14-3-3ζ's poorly understood chaperone action. Taken together, these results imply that disorder in the N-terminal helices of 14-3-3ζ is a consequence of the dimer–monomer dynamics and may play a role in conferring chaperone function to 14-3-3ζ protein.This work was supported in part by Australian National Health and Medical Research Council Project Grant 1068087 (to J. A. C.), National Health and Medical Research Council Program Grant 1071897 (to A. F. L.), and the Fay Fuller Foundation

    Human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription

    Get PDF
    Virion infectivity factor (Vif) facilitates HIV infection by counteracting APOBEC3G late in replication in virus-producer cells. Here, we show that early after infection of new target cells Vif is part of the HIV reverse transcription machinery and acts as an accessory factor for reverse transcription. Vif protein was present in gradient fractions containing reverse transcription complexes (RTCs), and anti-Vif antibody immunoprecipitated HIV reverse transcription products from these gradient fractions. To investigate a role for Vif in RTCs independent of APOBEC3G, we created an intracellular environment that would restrict reverse transcription by pre-treating permissive target cells with 5-Fluoro 2-deoxyuridine, a thymidylate synthetase inhibitor, prior to infection with virus from permissive cells. Infectivity assays and quantitation of reverse transcription products demonstrated that replication of HIV lacking Vif was inhibited to a greater degree than wild type, without concurrent mutation of reverse transcription products, suggesting compromised reverse transcription in the absence of Vif.Jillian M. Carr, Carl Coolen, Adam J. Davis, Christopher J. Burrell, Peng L
    corecore