40 research outputs found

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM

    Get PDF
    The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection

    The genome of the sea urchin Strongylocentrotus purpuratus

    Get PDF
    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: A role for ER stress?

    No full text
    Sarcolemmal Na+/H+ exchanger (NHE) activity, which is provided by the NHE isoform I (NHE1), has been implicated in ischemia/reperfusion-induced myocardial injury in animal models and humans, on the basis of studies with pharmacological NHE1 inhibitors. We generated a transgenic (TG) mouse model with cardiac-specific over-expression of NHE1 to determine whether this would be sufficient to increase myocardial susceptibility to ischemia/reperfusion-induced injury. TG mouse hearts exhibited increased sarcolemmal NHE activity and normal morphology and function. Surprisingly, they also showed reduced susceptibility to ischemia/reperfusion-induced injury as reflected by improved functional recovery and smaller infarcts. Such protection was sustained in the presence of NHE1 inhibition with zoniporide, indicating a mechanism that is independent of sarcolemmal NHE activity. Immunoblot analysis revealed accumulation of immature NHE1 protein as well as marked upregulation of both cytoprotective (78/94 kDa glucose-regulated proteins, calreticulin, protein disulfide isomerase) and pro-apoptotic (C/EBP homologous protein) components of the endoplasmic reticulum (ER) stress response in TG myocardium. With increasing age, NHE1 TG mice exhibited increased myocyte apoptosis, developed left ventricular contractile dysfunction, underwent cardiac remodelling and died prematurely. Our findings indicate that: (1) Cardiac-specific NHE1 over-expression induces the ER stress response in mouse myrocardium, which may afford protection against ischemia/reperfusion-induced injury despite increased NHE activity; (2) Ageing NHE1 TG mice exhibit myocyte apoptosis, cardiac remodelling and failure, likely as a result of Sustained ER stress; (3) The pluripotent effects of the ER stress response may confound studies that are based on the chronic over-expression of complex proteins in myrocardium. (C) 2008 Elsevier Inc. All rights reserved
    corecore