342 research outputs found
Supersymmetry, quark confinement and the harmonic oscillator
We study some quantum systems described by noncanonical commutation relations
formally expressed as [q,p]=ihbar(I + chi H), where H is the associated
(harmonic oscillator-like) Hamiltonian of the system, and chi is a Hermitian
(constant) operator, i.e. [H,chi]=0 . In passing, we also consider a simple
(chi=0 canonical) model, in the framework of a relativistic Klein-Gordon-like
wave equation.Comment: To be published in Journal of Physics A: Mathematical and Theoretical
(2007
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
Unconventional Josephson Junctions with Topological Kondo Insulator Weak Links
Proximity-induced superconductivity in three-dimensional (3D) topological insulators forms a new quantum phase of matter and accommodates exotic quasiparticles such as Majorana bound states. One of the biggest drawbacks of the commonly studied 3D topological insulators is the presence of conducting bulk that obscures both surface states and low energy bound states. Introducing superconductivity in topological Kondo insulators such as SmB6, however, is promising due to their true insulating bulk at low temperatures. In this work, we develop an unconventional Josephson junction by coupling superconducting Nb leads to the surface states of a SmB6 crystal. We observe a robust critical current at low temperatures that responds to the application of an out-of-plane magnetic field with significant deviations from usual Fraunhofer patterns. The appearance of Shaphiro steps under microwave radiation gives further evidence of a Josephson effect. Moreover, we explore the effects of Kondo breakdown in our devices, such as ferromagnetism at the surface and anomalous temperature dependence of supercurrent. Particularly, the magnetic diffraction patterns show an anomalous hysteresis with the field sweep direction suggesting the coexistence of magnetism with superconductivity at the SmB6 surface. The experimental work will advance the current understanding of topologically nontrivial superconductors and emergent states associated with such unconventional superconducting phases
Suicide Attacks or "Martyrdom Operations" in Contemporary Jihad Literature
Martyrdom operations are a factor in contemporary
radical Islam. These operations have their roots in classical jihad
literature, but fundamentally are a by-product of widespread frustration and perceived humiliations on the part of Muslims. The attacks of
11 September 2001 are rooted within this tradition
- …