22,152 research outputs found

    A structural, spectroscopic and theoretical study of the triphenylphosphine chalcogenide complexes of tungsten carbonyl, [W(XPPh3)(CO)5], X=O, S, Se

    Get PDF
    The series [W(XPPh3)(CO)5], X=O, S, Se has been structurally determined by X-ray crystallography and fully characterised spectroscopically to provide data for comparing the bonding of the Ph3PX ligands to the metal. The P-X-W angles are 134.3°, 113.2° and 109.2°, respectively, for X=O, S, Se. The bonding has been analysed using EHMO calculations which suggest that lower P-X-W angles depend on the relative importance of σ-bonding, which in turn depends on the chalcogen in the order X=Se > S > O. The effect is enhanced by lower energies of the metal σ and π orbital energies

    Negative-weight percolation

    Full text link
    We describe a percolation problem on lattices (graphs, networks), with edge weights drawn from disorder distributions that allow for weights (or distances) of either sign, i.e. including negative weights. We are interested whether there are spanning paths or loops of total negative weight. This kind of percolation problem is fundamentally different from conventional percolation problems, e.g. it does not exhibit transitivity, hence no simple definition of clusters, and several spanning paths/loops might coexist in the percolation regime at the same time. Furthermore, to study this percolation problem numerically, one has to perform a non-trivial transformation of the original graph and apply sophisticated matching algorithms. Using this approach, we study the corresponding percolation transitions on large square, hexagonal and cubic lattices for two types of disorder distributions and determine the critical exponents. The results show that negative-weight percolation is in a different universality class compared to conventional bond/site percolation. On the other hand, negative-weight percolation seems to be related to the ferromagnet/spin-glass transition of random-bond Ising systems, at least in two dimensions.Comment: v1: 4 pages, 4 figures; v2: 10 pages, 7 figures, added results, text and reference

    Implementing an apparent-horizon finder in three dimensions

    Get PDF
    Locating apparent horizons is not only important for a complete understanding of numerically generated spacetimes, but it may also be a crucial component of the technique for evolving black-hole spacetimes accurately. A scheme proposed by Libson et al., based on expanding the location of the apparent horizon in terms of symmetric trace-free tensors, seems very promising for use with three-dimensional numerical data sets. In this paper, we generalize this scheme and perform a number of code tests to fully calibrate its behavior in black-hole spacetimes similar to those we expect to encounter in solving the binary black-hole coalescence problem. An important aspect of the generalization is that we can compute the symmetric trace-free tensor expansion to any order. This enables us to determine how far we must carry the expansion to achieve results of a desired accuracy. To accomplish this generalization, we describe a new and very convenient set of recurrence relations which apply to symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures

    Ultrahigh-temperature regeneration of long period gratings (LPGs) in boron-codoped germanosilicate optical fibre

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. The regeneration of UV-written long period gratings (LPG) in boron-codoped germanosilicate “W” fibre is demonstrated and studied. They survive temperatures over 1000 °C. Compared with regenerated FBGs fabricated in the same type of fibre, the evolution curves of LPGs during regeneration and post-annealing reveal even more detail of glass relaxation. Piece-wise temperature dependence is observed, indicating the onset of a phase transition of glass in the core and inner cladding at ~500°C and ~250°C, and the melting of inner cladding between 860°C and 900°C. An asymmetric spectral response with increasing and decreasing annealing temperature points to the complex process dependent material system response. Resonant wavelength tuning by adjusting the dwell temperature at which regeneration is undertaken is demonstrated, showing a shorter resonant wavelength and shorter time for stabilisation with higher dwell temperatures. All the regenerated LPGs are nearly strain-insensitive and cannot be tuned by applying loads during annealing as done for regenerated FBGs

    The Innermost Stable Circular Orbit of Binary Black Holes

    Full text link
    We introduce a new method to construct solutions to the constraint equations of general relativity describing binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a simple method recently suggested by Brandt and Bruegmann, and quasicircular orbits can then be found by locating a minimum in the binding energy along sequences of constant horizon area. This approach produces binary black holes in a "three-sheeted" manifold structure, as opposed to the "two-sheeted" structure in the conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying manifold structure has a very small effect on the location of the innermost stable circular orbit.Comment: 8 pages, 3 figures, RevTex, submitted to PR

    A Robust AFPTAS for Online Bin Packing with Polynomial Migration

    Get PDF
    In this paper we develop general LP and ILP techniques to find an approximate solution with improved objective value close to an existing solution. The task of improving an approximate solution is closely related to a classical theorem of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is often applied in designing robust algorithms for online problems. We apply our new techniques to the online bin packing problem, where it is allowed to reassign a certain number of items, measured by the migration factor. The migration factor is defined by the total size of reassigned items divided by the size of the arriving item. We obtain a robust asymptotic fully polynomial time approximation scheme (AFPTAS) for the online bin packing problem with migration factor bounded by a polynomial in 1ϵ\frac{1}{\epsilon}. This answers an open question stated by Epstein and Levin in the affirmative. As a byproduct we prove an approximate variant of the sensitivity theorem by Cook at el. for linear programs

    Development of Uniform CdTe Pixel Detectors Based on Caltech ASIC

    Get PDF
    We have developed a large CdTe pixel detector with dimensions of 23.7 x 13.0 mm and a pixel size of 448 x 448 um^2. The detector is based on recent technologies of an uniform CdTe single crystal, a two-dimensional ASIC, and stud bump-bonding to connect pixel electrodes on the CdTe surface to the ASIC. Good spectra are obtained from 1051 pixels out of total 1056 pixels. When we operate the detector at -50 C, the energy resolution is 0.67 keV and 0.99 keV at 14 keV and 60 keV, respectively. Week-long stability of the detector is confirmed at operating temperatures of both -50 C and -20 C. The detector also shows high uniformity: the peak positions for all pixels agree to within 0.82%, and the average of the energy resolution is 1.04 keV at a temperature of -50 C. When we normalized the peak area by the total counts detected by each pixel, a variation of 2.1 % is obtained.Comment: 11pages, 17figures, accepted for publication in Proc. SPIE 200

    Domain-Wall Energies and Magnetization of the Two-Dimensional Random-Bond Ising Model

    Full text link
    We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a concentration p[0,1]p\in[0,1] of antiferromagnetic and (1p)(1-p) of ferromagnetic bonds. We apply an exact matching algorithm which enables us the study of systems with linear dimension LL up to 700. We study the behavior of the domain-wall energies and of the magnetization. We find that the paramagnet-ferromagnet transition occurs at pc0.103p_c \sim 0.103 compared to the concentration pn0.109p_n\sim 0.109 at the Nishimory point, which means that the phase diagram of the model exhibits a reentrance. Furthermore, we find no indications for an (intermediate) spin-glass ordering at finite temperature.Comment: 7 pages, 12 figures, revTe
    corecore