997 research outputs found

    Effect of interchain coupling on conducting polymer luminescence: excimers in derivatives of poly(phenylene vinylene)

    Full text link
    Optical excitation of a chain in a polymer film may result in formation of an excimer, a superposition of on-chain excitons and charge-transfer excitons on the originally excited chain and a neighboring chain. The excimer emission is red-shifted compared to that of an on-chain exciton by an amount depending on the interchain coupling t⊥t_\perp. Setting up the excimer wavefunction and calculating the red shift, we determine average t⊥t_\perp values, referred to a monomer, of 0.52 eV and 0.16 eV for poly(2,5-hexyloxy pp-phenylene cyanovinylene), CN-PPV, and poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1, 4 p-phenylene vinylene], MEH-PPV, respectively, and use them to determine the effect of interchain distance on the emission.Comment: 10 pages, RevTeX, 1 PS figure, replaced version of cond-mat/9707095, accepted for publication in Phys. Rev. B, Rapid Communicatio

    Integrated Optics: a Report on the 2nd OSA Topical Meeting

    Get PDF
    This report surveys the papers presented at the 2nd OSA Topical Meeting on Integrated Optics, which was held 21–24 January 1974 in New Orleans, La

    Integrating biodiversity and ecosystem services into the economic analysis of agricultural systems

    Get PDF
    Based on existing literature, this paper outlines the relationships between biodiversity, ecosystem services and food security. It additionally reviews tools which can be used to integrate biodiversity and ecosystem services into analytic frameworks to allow a better understanding of the trade-offs between different agricultural systems and their ecosystem service provisioning, as well as the resulting impact on productivity and human well-being

    Hot-electron effect in spin dephasing in nn-type GaAs quantum wells

    Full text link
    We perform a study of the effect of the high in-plane electric field on the spin precession and spin dephasing due to the D'yakonov-Perel' mechanism in nn-type GaAs (100) quantum wells by constructing and numerically solving the kinetic Bloch equations. We self-consistently include all of the scattering such as electron-phonon, electron-non-magnetic impurity as well as the electron-electron Coulomb scattering in our theory and systematically investigate how the spin precession and spin dephasing are affected by the high electric field under various conditions. The hot-electron distribution functions and the spin correlations are calculated rigorously in our theory. It is found that the D'yakonov-Perel' term in the electric field provides a non-vanishing effective magnetic field that alters the spin precession period. Moreover, spin dephasing is markedly affected by the electric field. The important contribution of the electron-electron scattering to the spin dephasing is also discussed.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.

    Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure

    Full text link
    The effect of pressure on acceptor levels and hole scattering mechanisms in p-GaSe is investigated through Hall effect and resistivity measurements under quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole concentration is interpreted through a carrier statistics equation with a single (nitrogen) or double (tin) acceptor whose ionization energies decrease under pressure due to the dielectric constant increase. The pressure effect on the hole mobility is also accounted for by considering the pressure dependencies of both the phonon frequencies and the hole-phonon coupling constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69 (1997

    Evidence for Excimer Photoexcitations in an Ordered {\pi}-Conjugated Polymer Film

    Full text link
    We report pressure-dependent transient picosecond and continuous-wave photomodulation studies of disordered and ordered films of 2-methoxy-5-(2-ethylhexyloxy) poly(para-phenylenevinylene). Photoinduced absorption (PA) bands in the disordered film exhibit very weak pressure dependence and are assigned to intrachain excitons and polarons. In contrast, the ordered film exhibits two additional transient PA bands in the midinfrared that blueshift dramatically with pressure. Based on high-order configuration interaction calculations we ascribe the PA bands in the ordered film to excimers. Our work brings insight to the exciton binding energy in ordered films versus disordered films and solutions. The reduced exciton binding energy in ordered films is due to new energy states appearing below the continuum band threshold of the single strand.Comment: 5.5 pages, 5 figure

    Mott-Peierls Transition in the extended Peierls-Hubbard model

    Full text link
    The one-dimensional extended Peierls-Hubbard model is studied at several band fillings using the density matrix renormalization group method. Results show that the ground state evolves from a Mott-Peierls insulator with a correlation gap at half-filling to a soliton lattice with a small band gap away from half-filling. It is also confirmed that the ground state of the Peierls-Hubbard model undergoes a transition to a metallic state at finite doping. These results show that electronic correlations effects should be taken into account in theoretical studies of doped polyacetylene. They also show that a Mott-Peierls theory could explain the insulator-metal transition observed in this material.Comment: 4 pages with 3 embedded eps figure
    • …
    corecore